x ਲਈ ਹਲ ਕਰੋ
x = -\frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx -1.042427968
x = \frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx 1.042427968
x=\frac{\sqrt{81-3\sqrt{633}}}{12}\approx 0.195816067
x=-\frac{\sqrt{81-3\sqrt{633}}}{12}\approx -0.195816067
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
24x^{2}x^{2}+1=27x^{2}
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x^{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
24x^{4}+1=27x^{2}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
24x^{4}+1-27x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 27x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
24t^{2}-27t+1=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 24 ਨੂੰ a ਦੇ ਨਾਲ, -27 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 1 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{27±\sqrt{633}}{48}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
t=\frac{27±\sqrt{633}}{48} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਹਰ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}