20x=64-2( { x }^{ 2 }
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\sqrt{57}-5\approx 2.549834435
x=-\left(\sqrt{57}+5\right)\approx -12.549834435
x ਲਈ ਹਲ ਕਰੋ
x=\sqrt{57}-5\approx 2.549834435
x=-\sqrt{57}-5\approx -12.549834435
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
20x-64=-2x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64 ਨੂੰ ਘਟਾ ਦਿਓ।
20x-64+2x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x^{2} ਜੋੜੋ।
2x^{2}+20x-64=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-64\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 20 ਨੂੰ b ਲਈ, ਅਤੇ -64 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-20±\sqrt{400-4\times 2\left(-64\right)}}{2\times 2}
20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-20±\sqrt{400-8\left(-64\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{400+512}}{2\times 2}
-8 ਨੂੰ -64 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{912}}{2\times 2}
400 ਨੂੰ 512 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-20±4\sqrt{57}}{2\times 2}
912 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-20±4\sqrt{57}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4\sqrt{57}-20}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±4\sqrt{57}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -20 ਨੂੰ 4\sqrt{57} ਵਿੱਚ ਜੋੜੋ।
x=\sqrt{57}-5
-20+4\sqrt{57} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-4\sqrt{57}-20}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±4\sqrt{57}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -20 ਵਿੱਚੋਂ 4\sqrt{57} ਨੂੰ ਘਟਾਓ।
x=-\sqrt{57}-5
-20-4\sqrt{57} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\sqrt{57}-5 x=-\sqrt{57}-5
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
20x+2x^{2}=64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x^{2} ਜੋੜੋ।
2x^{2}+20x=64
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}+20x}{2}=\frac{64}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{20}{2}x=\frac{64}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+10x=\frac{64}{2}
20 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+10x=32
64 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+10x+5^{2}=32+5^{2}
10, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ। ਫੇਰ, 5 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+10x+25=32+25
5 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+10x+25=57
32 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
\left(x+5\right)^{2}=57
ਫੈਕਟਰ x^{2}+10x+25। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+5\right)^{2}}=\sqrt{57}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+5=\sqrt{57} x+5=-\sqrt{57}
ਸਪਸ਼ਟ ਕਰੋ।
x=\sqrt{57}-5 x=-\sqrt{57}-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
20x-64=-2x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64 ਨੂੰ ਘਟਾ ਦਿਓ।
20x-64+2x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x^{2} ਜੋੜੋ।
2x^{2}+20x-64=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-20±\sqrt{20^{2}-4\times 2\left(-64\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 20 ਨੂੰ b ਲਈ, ਅਤੇ -64 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-20±\sqrt{400-4\times 2\left(-64\right)}}{2\times 2}
20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-20±\sqrt{400-8\left(-64\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{400+512}}{2\times 2}
-8 ਨੂੰ -64 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{912}}{2\times 2}
400 ਨੂੰ 512 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-20±4\sqrt{57}}{2\times 2}
912 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-20±4\sqrt{57}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4\sqrt{57}-20}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±4\sqrt{57}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -20 ਨੂੰ 4\sqrt{57} ਵਿੱਚ ਜੋੜੋ।
x=\sqrt{57}-5
-20+4\sqrt{57} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-4\sqrt{57}-20}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±4\sqrt{57}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -20 ਵਿੱਚੋਂ 4\sqrt{57} ਨੂੰ ਘਟਾਓ।
x=-\sqrt{57}-5
-20-4\sqrt{57} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\sqrt{57}-5 x=-\sqrt{57}-5
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
20x+2x^{2}=64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x^{2} ਜੋੜੋ।
2x^{2}+20x=64
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}+20x}{2}=\frac{64}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{20}{2}x=\frac{64}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+10x=\frac{64}{2}
20 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+10x=32
64 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+10x+5^{2}=32+5^{2}
10, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ। ਫੇਰ, 5 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+10x+25=32+25
5 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+10x+25=57
32 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
\left(x+5\right)^{2}=57
ਫੈਕਟਰ x^{2}+10x+25। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+5\right)^{2}}=\sqrt{57}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+5=\sqrt{57} x+5=-\sqrt{57}
ਸਪਸ਼ਟ ਕਰੋ।
x=\sqrt{57}-5 x=-\sqrt{57}-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}