ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

20x^{2}+2x-0=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
20x^{2}+2x=0
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
x\left(20x+2\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=-\frac{1}{10}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ 20x+2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
20x^{2}+2x-0=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
20x^{2}+2x=0
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
x=\frac{-2±\sqrt{2^{2}}}{2\times 20}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 20 ਨੂੰ a ਲਈ, 2 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-2±2}{2\times 20}
2^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-2±2}{40}
2 ਨੂੰ 20 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0}{40}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±2}{40} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -2 ਨੂੰ 2 ਵਿੱਚ ਜੋੜੋ।
x=0
0 ਨੂੰ 40 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{4}{40}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±2}{40} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -2 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾਓ।
x=-\frac{1}{10}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-4}{40} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=0 x=-\frac{1}{10}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
20x^{2}+2x-0=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
20x^{2}+2x=0+0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 0 ਜੋੜੋ।
20x^{2}+2x=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 0 ਨੂੰ ਜੋੜੋ।
\frac{20x^{2}+2x}{20}=\frac{0}{20}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 20 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{2}{20}x=\frac{0}{20}
20 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 20 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{10}x=\frac{0}{20}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{20} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{10}x=0
0 ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=\left(\frac{1}{20}\right)^{2}
\frac{1}{10}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{20} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{20} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{1}{400}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{20} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(x+\frac{1}{20}\right)^{2}=\frac{1}{400}
ਫੈਕਟਰ x^{2}+\frac{1}{10}x+\frac{1}{400}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{20}=\frac{1}{20} x+\frac{1}{20}=-\frac{1}{20}
ਸਪਸ਼ਟ ਕਰੋ।
x=0 x=-\frac{1}{10}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{20} ਨੂੰ ਘਟਾਓ।