ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-17 ab=20\left(-10\right)=-200
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 20u^{2}+au+bu-10 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-200 2,-100 4,-50 5,-40 8,-25 10,-20
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -200 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-200=-199 2-100=-98 4-50=-46 5-40=-35 8-25=-17 10-20=-10
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-25 b=8
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -17 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(20u^{2}-25u\right)+\left(8u-10\right)
20u^{2}-17u-10 ਨੂੰ \left(20u^{2}-25u\right)+\left(8u-10\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
5u\left(4u-5\right)+2\left(4u-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 5u ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(4u-5\right)\left(5u+2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 4u-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
20u^{2}-17u-10=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
u=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 20\left(-10\right)}}{2\times 20}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
u=\frac{-\left(-17\right)±\sqrt{289-4\times 20\left(-10\right)}}{2\times 20}
-17 ਦਾ ਵਰਗ ਕਰੋ।
u=\frac{-\left(-17\right)±\sqrt{289-80\left(-10\right)}}{2\times 20}
-4 ਨੂੰ 20 ਵਾਰ ਗੁਣਾ ਕਰੋ।
u=\frac{-\left(-17\right)±\sqrt{289+800}}{2\times 20}
-80 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
u=\frac{-\left(-17\right)±\sqrt{1089}}{2\times 20}
289 ਨੂੰ 800 ਵਿੱਚ ਜੋੜੋ।
u=\frac{-\left(-17\right)±33}{2\times 20}
1089 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
u=\frac{17±33}{2\times 20}
-17 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 17 ਹੈ।
u=\frac{17±33}{40}
2 ਨੂੰ 20 ਵਾਰ ਗੁਣਾ ਕਰੋ।
u=\frac{50}{40}
ਹੁਣ, ਸਮੀਕਰਨ u=\frac{17±33}{40} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 17 ਨੂੰ 33 ਵਿੱਚ ਜੋੜੋ।
u=\frac{5}{4}
10 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{50}{40} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
u=-\frac{16}{40}
ਹੁਣ, ਸਮੀਕਰਨ u=\frac{17±33}{40} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 17 ਵਿੱਚੋਂ 33 ਨੂੰ ਘਟਾਓ।
u=-\frac{2}{5}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-16}{40} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
20u^{2}-17u-10=20\left(u-\frac{5}{4}\right)\left(u-\left(-\frac{2}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{5}{4}ਅਤੇ x_{2} ਲਈ -\frac{2}{5} ਬਦਲ ਹੈ।
20u^{2}-17u-10=20\left(u-\frac{5}{4}\right)\left(u+\frac{2}{5}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
20u^{2}-17u-10=20\times \frac{4u-5}{4}\left(u+\frac{2}{5}\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ u ਵਿੱਚੋਂ \frac{5}{4} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
20u^{2}-17u-10=20\times \frac{4u-5}{4}\times \frac{5u+2}{5}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2}{5} ਨੂੰ u ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
20u^{2}-17u-10=20\times \frac{\left(4u-5\right)\left(5u+2\right)}{4\times 5}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{4u-5}{4} ਟਾਈਮਸ \frac{5u+2}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
20u^{2}-17u-10=20\times \frac{\left(4u-5\right)\left(5u+2\right)}{20}
4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
20u^{2}-17u-10=\left(4u-5\right)\left(5u+2\right)
20 ਅਤੇ 20 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 20 ਨੂੰ ਰੱਦ ਕਰੋ।