ਮੁਲਾਂਕਣ ਕਰੋ
\frac{16}{3}\approx 5.333333333
ਫੈਕਟਰ
\frac{2 ^ {4}}{3} = 5\frac{1}{3} = 5.333333333333333
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{2\times 3}{4}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
2\times \frac{3}{4} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{6}{4}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{3}{2}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{12}{8}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
2 ਅਤੇ 8 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। \frac{3}{2} ਅਤੇ \frac{13}{8} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{12+13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
ਕਿਉਂਕਿ \frac{12}{8} ਅਤੇ \frac{13}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{25}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 13 ਨੂੰ ਜੋੜੋ।
\frac{125}{40}+\frac{92}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
8 ਅਤੇ 10 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 40 ਹੈ। \frac{25}{8} ਅਤੇ \frac{23}{10} ਨੂੰ 40 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{125+92}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
ਕਿਉਂਕਿ \frac{125}{40} ਅਤੇ \frac{92}{40} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{217}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
217 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 125 ਅਤੇ 92 ਨੂੰ ਜੋੜੋ।
\frac{217}{40}-\frac{3\times 5}{24}+1\times \frac{8}{15}
3\times \frac{5}{24} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{217}{40}-\frac{15}{24}+1\times \frac{8}{15}
15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{217}{40}-\frac{5}{8}+1\times \frac{8}{15}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{15}{24} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{217}{40}-\frac{25}{40}+1\times \frac{8}{15}
40 ਅਤੇ 8 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 40 ਹੈ। \frac{217}{40} ਅਤੇ \frac{5}{8} ਨੂੰ 40 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{217-25}{40}+1\times \frac{8}{15}
ਕਿਉਂਕਿ \frac{217}{40} ਅਤੇ \frac{25}{40} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{192}{40}+1\times \frac{8}{15}
192 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 217 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{24}{5}+1\times \frac{8}{15}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{192}{40} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{24}{5}+\frac{8}{15}
\frac{8}{15} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ \frac{8}{15} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{72}{15}+\frac{8}{15}
5 ਅਤੇ 15 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 15 ਹੈ। \frac{24}{5} ਅਤੇ \frac{8}{15} ਨੂੰ 15 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{72+8}{15}
ਕਿਉਂਕਿ \frac{72}{15} ਅਤੇ \frac{8}{15} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{80}{15}
80 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 72 ਅਤੇ 8 ਨੂੰ ਜੋੜੋ।
\frac{16}{3}
5 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{80}{15} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}