ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x, y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x-3y+5=0,4x+ky-2=0
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
2x-3y+5=0
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ x ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ x ਲਈ ਹੱਲ ਕਰੋ।
2x-3y=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
2x=3y-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3y ਨੂੰ ਜੋੜੋ।
x=\frac{1}{2}\left(3y-5\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{3}{2}y-\frac{5}{2}
\frac{1}{2} ਨੂੰ 3y-5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
4\left(\frac{3}{2}y-\frac{5}{2}\right)+ky-2=0
ਦੂਜੇ ਸਮੀਕਰਨ 4x+ky-2=0 ਵਿੱਚ, x ਲਈ \frac{3y-5}{2} ਨੂੰ ਬਦਲ ਦਿਓ।
6y-10+ky-2=0
4 ਨੂੰ \frac{3y-5}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\left(k+6\right)y-10-2=0
6y ਨੂੰ ky ਵਿੱਚ ਜੋੜੋ।
\left(k+6\right)y-12=0
-10 ਨੂੰ -2 ਵਿੱਚ ਜੋੜੋ।
\left(k+6\right)y=12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12 ਨੂੰ ਜੋੜੋ।
y=\frac{12}{k+6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6+k ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{3}{2}\times \frac{12}{k+6}-\frac{5}{2}
x=\frac{3}{2}y-\frac{5}{2} ਵਿੱਚ y ਲਈ \frac{12}{6+k} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
x=\frac{18}{k+6}-\frac{5}{2}
\frac{3}{2} ਨੂੰ \frac{12}{6+k} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6-5k}{2\left(k+6\right)}
-\frac{5}{2} ਨੂੰ \frac{18}{6+k} ਵਿੱਚ ਜੋੜੋ।
x=\frac{6-5k}{2\left(k+6\right)},y=\frac{12}{k+6}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x-3y+5=0,4x+ky-2=0
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}2&-3\\4&k\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}2&-3\\4&k\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}2&-3\\4&k\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{k}{2k-\left(-3\times 4\right)}&-\frac{-3}{2k-\left(-3\times 4\right)}\\-\frac{4}{2k-\left(-3\times 4\right)}&\frac{2}{2k-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-5\\2\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{k}{2\left(k+6\right)}&\frac{3}{2\left(k+6\right)}\\-\frac{2}{k+6}&\frac{1}{k+6}\end{matrix}\right)\left(\begin{matrix}-5\\2\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{k}{2\left(k+6\right)}\left(-5\right)+\frac{3}{2\left(k+6\right)}\times 2\\\left(-\frac{2}{k+6}\right)\left(-5\right)+\frac{1}{k+6}\times 2\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6-5k}{2\left(k+6\right)}\\\frac{12}{k+6}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
x=\frac{6-5k}{2\left(k+6\right)},y=\frac{12}{k+6}
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) x ਅਤੇ y ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
2x-3y+5=0,4x+ky-2=0
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
4\times 2x+4\left(-3\right)y+4\times 5=0,2\times 4x+2ky+2\left(-2\right)=0
2x ਅਤੇ 4x ਨੂੰ ਸਮਾਨ ਬਣਾਉਣ ਲਈ, ਪਹਿਲੇ ਸਮੀਕਰਨ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 4 ਦੇ ਨਾਲ ਅਤੇ ਦੂਜੇ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
8x-12y+20=0,8x+2ky-4=0
ਸਪਸ਼ਟ ਕਰੋ।
8x-8x-12y+\left(-2k\right)y+20+4=0
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ 8x-12y+20=0 ਵਿੱਚੋਂ 8x+2ky-4=0 ਨੂੰ ਘਟਾ ਦਿਓ।
-12y+\left(-2k\right)y+20+4=0
8x ਨੂੰ -8x ਵਿੱਚ ਜੋੜੋ। 8x ਅਤੇ -8x ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\left(-2k-12\right)y+20+4=0
-12y ਨੂੰ -2ky ਵਿੱਚ ਜੋੜੋ।
\left(-2k-12\right)y+24=0
20 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(-2k-12\right)y=-24
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24 ਨੂੰ ਘਟਾਓ।
y=\frac{12}{k+6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -12-2k ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
4x+k\times \frac{12}{k+6}-2=0
4x+ky-2=0 ਵਿੱਚ y ਲਈ \frac{12}{6+k} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
4x+\frac{12k}{k+6}-2=0
k ਨੂੰ \frac{12}{6+k} ਵਾਰ ਗੁਣਾ ਕਰੋ।
4x+\frac{2\left(5k-6\right)}{k+6}=0
\frac{12k}{6+k} ਨੂੰ -2 ਵਿੱਚ ਜੋੜੋ।
4x=-\frac{2\left(5k-6\right)}{k+6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{2\left(5k-6\right)}{6+k} ਨੂੰ ਘਟਾਓ।
x=-\frac{5k-6}{2\left(k+6\right)}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-\frac{5k-6}{2\left(k+6\right)},y=\frac{12}{k+6}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।