ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
2x ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10x ਅਤੇ 3x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-7x=10\times \frac{1}{2}-10x
10 ਨੂੰ \frac{1}{2}-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ \frac{1}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
2x^{2}-7x=5-10x
10 ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ।
2x^{2}-7x-5=-10x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-7x-5+10x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
2x^{2}+3x-5=0
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 3 ਨੂੰ b ਲਈ, ਅਤੇ -5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-3±\sqrt{49}}{2\times 2}
9 ਨੂੰ 40 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3±7}{2\times 2}
49 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-3±7}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-3±7}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -3 ਨੂੰ 7 ਵਿੱਚ ਜੋੜੋ।
x=1
4 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{10}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-3±7}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -3 ਵਿੱਚੋਂ 7 ਨੂੰ ਘਟਾਓ।
x=-\frac{5}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-10}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=1 x=-\frac{5}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
2x ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10x ਅਤੇ 3x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-7x=10\times \frac{1}{2}-10x
10 ਨੂੰ \frac{1}{2}-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ \frac{1}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
2x^{2}-7x=5-10x
10 ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ।
2x^{2}-7x+10x=5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
2x^{2}+3x=5
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
\frac{2x^{2}+3x}{2}=\frac{5}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{3}{2}x=\frac{5}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{4} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{5}{2} ਨੂੰ \frac{9}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
ਫੈਕਟਰ x^{2}+\frac{3}{2}x+\frac{9}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=1 x=-\frac{5}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{4} ਨੂੰ ਘਟਾਓ।