ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-9x+5=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 5}}{2\times 2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 5}}{2\times 2}
-9 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{81-8\times 5}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{81-40}}{2\times 2}
-8 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{41}}{2\times 2}
81 ਨੂੰ -40 ਵਿੱਚ ਜੋੜੋ।
x=\frac{9±\sqrt{41}}{2\times 2}
-9 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 9 ਹੈ।
x=\frac{9±\sqrt{41}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{41}+9}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{9±\sqrt{41}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 9 ਨੂੰ \sqrt{41} ਵਿੱਚ ਜੋੜੋ।
x=\frac{9-\sqrt{41}}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{9±\sqrt{41}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 9 ਵਿੱਚੋਂ \sqrt{41} ਨੂੰ ਘਟਾਓ।
2x^{2}-9x+5=2\left(x-\frac{\sqrt{41}+9}{4}\right)\left(x-\frac{9-\sqrt{41}}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{9+\sqrt{41}}{4}ਅਤੇ x_{2} ਲਈ \frac{9-\sqrt{41}}{4} ਬਦਲ ਹੈ।