ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-6x-7x+21=0
7x-21 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}-13x+21=0
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ -7x ਨੂੰ ਮਿਲਾਓ।
a+b=-13 ab=2\times 21=42
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 2x^{2}+ax+bx+21 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-42 -2,-21 -3,-14 -6,-7
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 42 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-7 b=-6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -13 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(2x^{2}-7x\right)+\left(-6x+21\right)
2x^{2}-13x+21 ਨੂੰ \left(2x^{2}-7x\right)+\left(-6x+21\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(2x-7\right)-3\left(2x-7\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2x-7\right)\left(x-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2x-7 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=\frac{7}{2} x=3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 2x-7=0 ਅਤੇ x-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
2x^{2}-6x-7x+21=0
7x-21 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}-13x+21=0
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ -7x ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 21}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -13 ਨੂੰ b ਲਈ, ਅਤੇ 21 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 21}}{2\times 2}
-13 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-13\right)±\sqrt{169-8\times 21}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-13\right)±\sqrt{169-168}}{2\times 2}
-8 ਨੂੰ 21 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-13\right)±\sqrt{1}}{2\times 2}
169 ਨੂੰ -168 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-13\right)±1}{2\times 2}
1 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{13±1}{2\times 2}
-13 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 13 ਹੈ।
x=\frac{13±1}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{14}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{13±1}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 13 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
x=\frac{7}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{14}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{12}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{13±1}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 13 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
x=3
12 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{7}{2} x=3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-6x-7x+21=0
7x-21 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
2x^{2}-13x+21=0
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ -7x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-13x=-21
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 21 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{2x^{2}-13x}{2}=-\frac{21}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{13}{2}x=-\frac{21}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{21}{2}+\left(-\frac{13}{4}\right)^{2}
-\frac{13}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{13}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{13}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{21}{2}+\frac{169}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{13}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{1}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{21}{2} ਨੂੰ \frac{169}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{13}{4}\right)^{2}=\frac{1}{16}
ਫੈਕਟਰ x^{2}-\frac{13}{2}x+\frac{169}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{13}{4}=\frac{1}{4} x-\frac{13}{4}=-\frac{1}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{7}{2} x=3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{13}{4} ਨੂੰ ਜੋੜੋ।