ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-34x=-22
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
2x^{2}-34x-\left(-22\right)=-22-\left(-22\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 22 ਨੂੰ ਜੋੜੋ।
2x^{2}-34x-\left(-22\right)=0
-22 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
2x^{2}-34x+22=0
0 ਵਿੱਚੋਂ -22 ਨੂੰ ਘਟਾਓ।
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 22}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -34 ਨੂੰ b ਲਈ, ਅਤੇ 22 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 22}}{2\times 2}
-34 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-34\right)±\sqrt{1156-8\times 22}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-34\right)±\sqrt{1156-176}}{2\times 2}
-8 ਨੂੰ 22 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-34\right)±\sqrt{980}}{2\times 2}
1156 ਨੂੰ -176 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-34\right)±14\sqrt{5}}{2\times 2}
980 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{34±14\sqrt{5}}{2\times 2}
-34 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 34 ਹੈ।
x=\frac{34±14\sqrt{5}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{14\sqrt{5}+34}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{34±14\sqrt{5}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 34 ਨੂੰ 14\sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=\frac{7\sqrt{5}+17}{2}
34+14\sqrt{5} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{34-14\sqrt{5}}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{34±14\sqrt{5}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 34 ਵਿੱਚੋਂ 14\sqrt{5} ਨੂੰ ਘਟਾਓ।
x=\frac{17-7\sqrt{5}}{2}
34-14\sqrt{5} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{7\sqrt{5}+17}{2} x=\frac{17-7\sqrt{5}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-34x=-22
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}-34x}{2}=-\frac{22}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{34}{2}\right)x=-\frac{22}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-17x=-\frac{22}{2}
-34 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-17x=-11
-22 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-11+\left(-\frac{17}{2}\right)^{2}
-17, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{17}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{17}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-17x+\frac{289}{4}=-11+\frac{289}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{17}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-17x+\frac{289}{4}=\frac{245}{4}
-11 ਨੂੰ \frac{289}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{17}{2}\right)^{2}=\frac{245}{4}
ਫੈਕਟਰ x^{2}-17x+\frac{289}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{245}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{17}{2}=\frac{7\sqrt{5}}{2} x-\frac{17}{2}=-\frac{7\sqrt{5}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{7\sqrt{5}+17}{2} x=\frac{17-7\sqrt{5}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{17}{2} ਨੂੰ ਜੋੜੋ।