ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-28x+171=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 171}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -28 ਨੂੰ b ਲਈ, ਅਤੇ 171 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 171}}{2\times 2}
-28 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-28\right)±\sqrt{784-8\times 171}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-28\right)±\sqrt{784-1368}}{2\times 2}
-8 ਨੂੰ 171 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-28\right)±\sqrt{-584}}{2\times 2}
784 ਨੂੰ -1368 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-28\right)±2\sqrt{146}i}{2\times 2}
-584 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{28±2\sqrt{146}i}{2\times 2}
-28 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 28 ਹੈ।
x=\frac{28±2\sqrt{146}i}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{28+2\sqrt{146}i}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{28±2\sqrt{146}i}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 28 ਨੂੰ 2i\sqrt{146} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{146}i}{2}+7
28+2i\sqrt{146} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{146}i+28}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{28±2\sqrt{146}i}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 28 ਵਿੱਚੋਂ 2i\sqrt{146} ਨੂੰ ਘਟਾਓ।
x=-\frac{\sqrt{146}i}{2}+7
28-2i\sqrt{146} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-28x+171=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
2x^{2}-28x+171-171=-171
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 171 ਨੂੰ ਘਟਾਓ।
2x^{2}-28x=-171
171 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{2x^{2}-28x}{2}=-\frac{171}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{171}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-14x=-\frac{171}{2}
-28 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-14x+\left(-7\right)^{2}=-\frac{171}{2}+\left(-7\right)^{2}
-14, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -7 ਨਿਕਲੇ। ਫੇਰ, -7 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-14x+49=-\frac{171}{2}+49
-7 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-14x+49=-\frac{73}{2}
-\frac{171}{2} ਨੂੰ 49 ਵਿੱਚ ਜੋੜੋ।
\left(x-7\right)^{2}=-\frac{73}{2}
ਫੈਕਟਰ x^{2}-14x+49। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-7\right)^{2}}=\sqrt{-\frac{73}{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-7=\frac{\sqrt{146}i}{2} x-7=-\frac{\sqrt{146}i}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 7 ਨੂੰ ਜੋੜੋ।