w ਲਈ ਹਲ ਕਰੋ
w=-6
w=5
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2w^{2}+11w-5=w^{2}+10w+25
\left(w+5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2w^{2}+11w-5-w^{2}=10w+25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ w^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+11w-5=10w+25
w^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2w^{2} ਅਤੇ -w^{2} ਨੂੰ ਮਿਲਾਓ।
w^{2}+11w-5-10w=25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10w ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-5=25
w ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11w ਅਤੇ -10w ਨੂੰ ਮਿਲਾਓ।
w^{2}+w-5-25=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-30=0
-30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=1 ab=-30
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ w^{2}+w-30 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,30 -2,15 -3,10 -5,6
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -30 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-5 b=6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 1 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(w-5\right)\left(w+6\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(w+a\right)\left(w+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
w=5 w=-6
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, w-5=0 ਅਤੇ w+6=0 ਨੂੰ ਹੱਲ ਕਰੋ।
2w^{2}+11w-5=w^{2}+10w+25
\left(w+5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2w^{2}+11w-5-w^{2}=10w+25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ w^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+11w-5=10w+25
w^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2w^{2} ਅਤੇ -w^{2} ਨੂੰ ਮਿਲਾਓ।
w^{2}+11w-5-10w=25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10w ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-5=25
w ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11w ਅਤੇ -10w ਨੂੰ ਮਿਲਾਓ।
w^{2}+w-5-25=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-30=0
-30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=1 ab=1\left(-30\right)=-30
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ w^{2}+aw+bw-30 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,30 -2,15 -3,10 -5,6
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -30 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-5 b=6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 1 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(w^{2}-5w\right)+\left(6w-30\right)
w^{2}+w-30 ਨੂੰ \left(w^{2}-5w\right)+\left(6w-30\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
w\left(w-5\right)+6\left(w-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ w ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 6 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(w-5\right)\left(w+6\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ w-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
w=5 w=-6
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, w-5=0 ਅਤੇ w+6=0 ਨੂੰ ਹੱਲ ਕਰੋ।
2w^{2}+11w-5=w^{2}+10w+25
\left(w+5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2w^{2}+11w-5-w^{2}=10w+25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ w^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+11w-5=10w+25
w^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2w^{2} ਅਤੇ -w^{2} ਨੂੰ ਮਿਲਾਓ।
w^{2}+11w-5-10w=25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10w ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-5=25
w ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11w ਅਤੇ -10w ਨੂੰ ਮਿਲਾਓ।
w^{2}+w-5-25=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-30=0
-30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
w=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 1 ਨੂੰ b ਲਈ, ਅਤੇ -30 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
w=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
1 ਦਾ ਵਰਗ ਕਰੋ।
w=\frac{-1±\sqrt{1+120}}{2}
-4 ਨੂੰ -30 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{-1±\sqrt{121}}{2}
1 ਨੂੰ 120 ਵਿੱਚ ਜੋੜੋ।
w=\frac{-1±11}{2}
121 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w=\frac{10}{2}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{-1±11}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -1 ਨੂੰ 11 ਵਿੱਚ ਜੋੜੋ।
w=5
10 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w=-\frac{12}{2}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{-1±11}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -1 ਵਿੱਚੋਂ 11 ਨੂੰ ਘਟਾਓ।
w=-6
-12 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w=5 w=-6
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2w^{2}+11w-5=w^{2}+10w+25
\left(w+5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2w^{2}+11w-5-w^{2}=10w+25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ w^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+11w-5=10w+25
w^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2w^{2} ਅਤੇ -w^{2} ਨੂੰ ਮਿਲਾਓ।
w^{2}+11w-5-10w=25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10w ਨੂੰ ਘਟਾ ਦਿਓ।
w^{2}+w-5=25
w ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11w ਅਤੇ -10w ਨੂੰ ਮਿਲਾਓ।
w^{2}+w=25+5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਜੋੜੋ।
w^{2}+w=30
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 25 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
w^{2}+w+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
1, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
w^{2}+w+\frac{1}{4}=30+\frac{1}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
w^{2}+w+\frac{1}{4}=\frac{121}{4}
30 ਨੂੰ \frac{1}{4} ਵਿੱਚ ਜੋੜੋ।
\left(w+\frac{1}{2}\right)^{2}=\frac{121}{4}
ਫੈਕਟਰ w^{2}+w+\frac{1}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(w+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w+\frac{1}{2}=\frac{11}{2} w+\frac{1}{2}=-\frac{11}{2}
ਸਪਸ਼ਟ ਕਰੋ।
w=5 w=-6
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{2} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}