t ਲਈ ਹਲ ਕਰੋ
t=\sqrt{6}+1\approx 3.449489743
t=1-\sqrt{6}\approx -1.449489743
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2t-\left(-5\right)=t^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ -5 ਨੂੰ ਘਟਾ ਦਿਓ।
2t+5=t^{2}
-5 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5 ਹੈ।
2t+5-t^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ t^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-t^{2}+2t+5=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
t=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 2 ਨੂੰ b ਲਈ, ਅਤੇ 5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
t=\frac{-2±\sqrt{4-4\left(-1\right)\times 5}}{2\left(-1\right)}
2 ਦਾ ਵਰਗ ਕਰੋ।
t=\frac{-2±\sqrt{4+4\times 5}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-2±\sqrt{4+20}}{2\left(-1\right)}
4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-2±\sqrt{24}}{2\left(-1\right)}
4 ਨੂੰ 20 ਵਿੱਚ ਜੋੜੋ।
t=\frac{-2±2\sqrt{6}}{2\left(-1\right)}
24 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{-2±2\sqrt{6}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{2\sqrt{6}-2}{-2}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-2±2\sqrt{6}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -2 ਨੂੰ 2\sqrt{6} ਵਿੱਚ ਜੋੜੋ।
t=1-\sqrt{6}
-2+2\sqrt{6} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=\frac{-2\sqrt{6}-2}{-2}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-2±2\sqrt{6}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -2 ਵਿੱਚੋਂ 2\sqrt{6} ਨੂੰ ਘਟਾਓ।
t=\sqrt{6}+1
-2-2\sqrt{6} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=1-\sqrt{6} t=\sqrt{6}+1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2t-t^{2}=-5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ t^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-t^{2}+2t=-5
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-t^{2}+2t}{-1}=-\frac{5}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
t^{2}+\frac{2}{-1}t=-\frac{5}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
t^{2}-2t=-\frac{5}{-1}
2 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-2t=5
-5 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-2t+1=5+1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
t^{2}-2t+1=6
5 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(t-1\right)^{2}=6
ਫੈਕਟਰ t^{2}-2t+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(t-1\right)^{2}}=\sqrt{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t-1=\sqrt{6} t-1=-\sqrt{6}
ਸਪਸ਼ਟ ਕਰੋ।
t=\sqrt{6}+1 t=1-\sqrt{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}