ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
p ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2p^{2}+4p-5=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
p=\frac{-4±\sqrt{4^{2}-4\times 2\left(-5\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 4 ਨੂੰ b ਲਈ, ਅਤੇ -5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
p=\frac{-4±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
4 ਦਾ ਵਰਗ ਕਰੋ।
p=\frac{-4±\sqrt{16-8\left(-5\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
p=\frac{-4±\sqrt{16+40}}{2\times 2}
-8 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
p=\frac{-4±\sqrt{56}}{2\times 2}
16 ਨੂੰ 40 ਵਿੱਚ ਜੋੜੋ।
p=\frac{-4±2\sqrt{14}}{2\times 2}
56 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
p=\frac{-4±2\sqrt{14}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
p=\frac{2\sqrt{14}-4}{4}
ਹੁਣ, ਸਮੀਕਰਨ p=\frac{-4±2\sqrt{14}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 2\sqrt{14} ਵਿੱਚ ਜੋੜੋ।
p=\frac{\sqrt{14}}{2}-1
-4+2\sqrt{14} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
p=\frac{-2\sqrt{14}-4}{4}
ਹੁਣ, ਸਮੀਕਰਨ p=\frac{-4±2\sqrt{14}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਵਿੱਚੋਂ 2\sqrt{14} ਨੂੰ ਘਟਾਓ।
p=-\frac{\sqrt{14}}{2}-1
-4-2\sqrt{14} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2p^{2}+4p-5=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
2p^{2}+4p-5-\left(-5\right)=-\left(-5\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਨੂੰ ਜੋੜੋ।
2p^{2}+4p=-\left(-5\right)
-5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
2p^{2}+4p=5
0 ਵਿੱਚੋਂ -5 ਨੂੰ ਘਟਾਓ।
\frac{2p^{2}+4p}{2}=\frac{5}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
p^{2}+\frac{4}{2}p=\frac{5}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
p^{2}+2p=\frac{5}{2}
4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
p^{2}+2p+1^{2}=\frac{5}{2}+1^{2}
2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ। ਫੇਰ, 1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
p^{2}+2p+1=\frac{5}{2}+1
1 ਦਾ ਵਰਗ ਕਰੋ।
p^{2}+2p+1=\frac{7}{2}
\frac{5}{2} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(p+1\right)^{2}=\frac{7}{2}
ਫੈਕਟਰ p^{2}+2p+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(p+1\right)^{2}}=\sqrt{\frac{7}{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
p+1=\frac{\sqrt{14}}{2} p+1=-\frac{\sqrt{14}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।