ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
n ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2n^{2}-5n-4=6
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
2n^{2}-5n-4-6=6-6
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6 ਨੂੰ ਘਟਾਓ।
2n^{2}-5n-4-6=0
6 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
2n^{2}-5n-10=0
-4 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾਓ।
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -5 ਨੂੰ b ਲਈ, ਅਤੇ -10 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
n=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-10\right)}}{2\times 2}
-5 ਦਾ ਵਰਗ ਕਰੋ।
n=\frac{-\left(-5\right)±\sqrt{25-8\left(-10\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-\left(-5\right)±\sqrt{25+80}}{2\times 2}
-8 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-\left(-5\right)±\sqrt{105}}{2\times 2}
25 ਨੂੰ 80 ਵਿੱਚ ਜੋੜੋ।
n=\frac{5±\sqrt{105}}{2\times 2}
-5 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5 ਹੈ।
n=\frac{5±\sqrt{105}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{\sqrt{105}+5}{4}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{5±\sqrt{105}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 5 ਨੂੰ \sqrt{105} ਵਿੱਚ ਜੋੜੋ।
n=\frac{5-\sqrt{105}}{4}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{5±\sqrt{105}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 5 ਵਿੱਚੋਂ \sqrt{105} ਨੂੰ ਘਟਾਓ।
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2n^{2}-5n-4=6
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
2n^{2}-5n-4-\left(-4\right)=6-\left(-4\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।
2n^{2}-5n=6-\left(-4\right)
-4 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
2n^{2}-5n=10
6 ਵਿੱਚੋਂ -4 ਨੂੰ ਘਟਾਓ।
\frac{2n^{2}-5n}{2}=\frac{10}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n^{2}-\frac{5}{2}n=\frac{10}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
n^{2}-\frac{5}{2}n=5
10 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n^{2}-\frac{5}{2}n+\left(-\frac{5}{4}\right)^{2}=5+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
n^{2}-\frac{5}{2}n+\frac{25}{16}=5+\frac{25}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
n^{2}-\frac{5}{2}n+\frac{25}{16}=\frac{105}{16}
5 ਨੂੰ \frac{25}{16} ਵਿੱਚ ਜੋੜੋ।
\left(n-\frac{5}{4}\right)^{2}=\frac{105}{16}
ਫੈਕਟਰ n^{2}-\frac{5}{2}n+\frac{25}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(n-\frac{5}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n-\frac{5}{4}=\frac{\sqrt{105}}{4} n-\frac{5}{4}=-\frac{\sqrt{105}}{4}
ਸਪਸ਼ਟ ਕਰੋ।
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{4} ਨੂੰ ਜੋੜੋ।