ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-9 ab=2\left(-11\right)=-22
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 2d^{2}+ad+bd-11 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-22 2,-11
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -22 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-22=-21 2-11=-9
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-11 b=2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -9 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(2d^{2}-11d\right)+\left(2d-11\right)
2d^{2}-9d-11 ਨੂੰ \left(2d^{2}-11d\right)+\left(2d-11\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
d\left(2d-11\right)+2d-11
2d^{2}-11d ਵਿੱਚੋਂ d ਫੈਕਟਰ ਕੱਢੋ।
\left(2d-11\right)\left(d+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2d-11 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
2d^{2}-9d-11=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-11\right)}}{2\times 2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
d=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-11\right)}}{2\times 2}
-9 ਦਾ ਵਰਗ ਕਰੋ।
d=\frac{-\left(-9\right)±\sqrt{81-8\left(-11\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
d=\frac{-\left(-9\right)±\sqrt{81+88}}{2\times 2}
-8 ਨੂੰ -11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
d=\frac{-\left(-9\right)±\sqrt{169}}{2\times 2}
81 ਨੂੰ 88 ਵਿੱਚ ਜੋੜੋ।
d=\frac{-\left(-9\right)±13}{2\times 2}
169 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
d=\frac{9±13}{2\times 2}
-9 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 9 ਹੈ।
d=\frac{9±13}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
d=\frac{22}{4}
ਹੁਣ, ਸਮੀਕਰਨ d=\frac{9±13}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 9 ਨੂੰ 13 ਵਿੱਚ ਜੋੜੋ।
d=\frac{11}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{22}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
d=-\frac{4}{4}
ਹੁਣ, ਸਮੀਕਰਨ d=\frac{9±13}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 9 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾਓ।
d=-1
-4 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
2d^{2}-9d-11=2\left(d-\frac{11}{2}\right)\left(d-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਨੂੰ ਵਰਤ ਕੇ ਮੂਲ ਐਕਸਪ੍ਰੈਸ਼ਨ ਦਾ ਫੈਕਟਰ ਬਣਾਓ। x_{1} ਦੀ ਥਾਂ ਤੇ \frac{11}{2} ਅਤੇ x_{2} ਦੀ ਥਾਂ ਤੇ -1 ਨੂੰ ਲਗਾਓ।
2d^{2}-9d-11=2\left(d-\frac{11}{2}\right)\left(d+1\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
2d^{2}-9d-11=2\times \frac{2d-11}{2}\left(d+1\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ d ਵਿੱਚੋਂ \frac{11}{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
2d^{2}-9d-11=\left(2d-11\right)\left(d+1\right)
2 ਅਤੇ 2 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 2 ਨੂੰ ਰੱਦ ਕਰੋ।