ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

p+q=5 pq=2\left(-12\right)=-24
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 2a^{2}+pa+qa-12 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। p ਅਤੇ q ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,24 -2,12 -3,8 -4,6
ਕਿਉਂਕਿ pq ਨੈਗੇਟਿਵ ਹੈ, p ਅਤੇ q ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ p+q ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -24 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
p=-3 q=8
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 5 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(2a^{2}-3a\right)+\left(8a-12\right)
2a^{2}+5a-12 ਨੂੰ \left(2a^{2}-3a\right)+\left(8a-12\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
a\left(2a-3\right)+4\left(2a-3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2a-3\right)\left(a+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2a-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
2a^{2}+5a-12=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-5±\sqrt{25+96}}{2\times 2}
-8 ਨੂੰ -12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-5±\sqrt{121}}{2\times 2}
25 ਨੂੰ 96 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-5±11}{2\times 2}
121 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{-5±11}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{6}{4}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{-5±11}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -5 ਨੂੰ 11 ਵਿੱਚ ਜੋੜੋ।
a=\frac{3}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
a=-\frac{16}{4}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{-5±11}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -5 ਵਿੱਚੋਂ 11 ਨੂੰ ਘਟਾਓ।
a=-4
-16 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{3}{2}ਅਤੇ x_{2} ਲਈ -4 ਬਦਲ ਹੈ।
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ a ਵਿੱਚੋਂ \frac{3}{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
2 ਅਤੇ 2 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 2 ਨੂੰ ਰੱਦ ਕਰੋ।