ਮੁਲਾਂਕਣ ਕਰੋ
\frac{71}{40}=1.775
ਫੈਕਟਰ
\frac{71}{2 ^ {3} \cdot 5} = 1\frac{31}{40} = 1.775
ਕੁਇਜ਼
Arithmetic
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
2 - \frac { 1 } { 4 } - ( \frac { - 1 } { 8 } ) - \frac { 1 } { 10 } =
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{8}{4}-\frac{1}{4}-\frac{-1}{8}-\frac{1}{10}
2 ਨੂੰ \frac{8}{4} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{8-1}{4}-\frac{-1}{8}-\frac{1}{10}
ਕਿਉਂਕਿ \frac{8}{4} ਅਤੇ \frac{1}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{7}{4}-\frac{-1}{8}-\frac{1}{10}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{7}{4}-\left(-\frac{1}{8}\right)-\frac{1}{10}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-1}{8} ਨੂੰ -\frac{1}{8} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\frac{7}{4}+\frac{1}{8}-\frac{1}{10}
-\frac{1}{8} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{1}{8} ਹੈ।
\frac{14}{8}+\frac{1}{8}-\frac{1}{10}
4 ਅਤੇ 8 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। \frac{7}{4} ਅਤੇ \frac{1}{8} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{14+1}{8}-\frac{1}{10}
ਕਿਉਂਕਿ \frac{14}{8} ਅਤੇ \frac{1}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{15}{8}-\frac{1}{10}
15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{75}{40}-\frac{4}{40}
8 ਅਤੇ 10 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 40 ਹੈ। \frac{15}{8} ਅਤੇ \frac{1}{10} ਨੂੰ 40 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{75-4}{40}
ਕਿਉਂਕਿ \frac{75}{40} ਅਤੇ \frac{4}{40} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{71}{40}
71 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 75 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}