x ਲਈ ਹਲ ਕਰੋ
x=\frac{1-2y}{15}
y ਲਈ ਹਲ ਕਰੋ
y=\frac{1-15x}{2}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
y-6x=2y+\frac{1}{2}\left(3x-1\right)
2 ਨੂੰ \frac{1}{2}y-3x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
\frac{1}{2} ਨੂੰ 3x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
y-6x-\frac{3}{2}x=2y-\frac{1}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{2}x ਨੂੰ ਘਟਾ ਦਿਓ।
y-\frac{15}{2}x=2y-\frac{1}{2}
-\frac{15}{2}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ -\frac{3}{2}x ਨੂੰ ਮਿਲਾਓ।
-\frac{15}{2}x=2y-\frac{1}{2}-y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ y ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{15}{2}x=y-\frac{1}{2}
y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2y ਅਤੇ -y ਨੂੰ ਮਿਲਾਓ।
\frac{-\frac{15}{2}x}{-\frac{15}{2}}=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -\frac{15}{2} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
x=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
-\frac{15}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -\frac{15}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{1-2y}{15}
y-\frac{1}{2} ਨੂੰ -\frac{15}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ y-\frac{1}{2}ਨੂੰ -\frac{15}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y-6x=2y+\frac{1}{2}\left(3x-1\right)
2 ਨੂੰ \frac{1}{2}y-3x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
\frac{1}{2} ਨੂੰ 3x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
y-6x-2y=\frac{3}{2}x-\frac{1}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2y ਨੂੰ ਘਟਾ ਦਿਓ।
-y-6x=\frac{3}{2}x-\frac{1}{2}
-y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ y ਅਤੇ -2y ਨੂੰ ਮਿਲਾਓ।
-y=\frac{3}{2}x-\frac{1}{2}+6x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6x ਜੋੜੋ।
-y=\frac{15}{2}x-\frac{1}{2}
\frac{15}{2}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{3}{2}x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
-y=\frac{15x-1}{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{-y}{-1}=\frac{15x-1}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{15x-1}{-2}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=\frac{1-15x}{2}
\frac{15x-1}{2} ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}