ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-4x-135=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-135\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -4 ਨੂੰ b ਲਈ, ਅਤੇ -135 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-135\right)}}{2\times 2}
-4 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-135\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16+1080}}{2\times 2}
-8 ਨੂੰ -135 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{1096}}{2\times 2}
16 ਨੂੰ 1080 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-4\right)±2\sqrt{274}}{2\times 2}
1096 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{4±2\sqrt{274}}{2\times 2}
-4 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 4 ਹੈ।
x=\frac{4±2\sqrt{274}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{274}+4}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±2\sqrt{274}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 2\sqrt{274} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{274}}{2}+1
4+2\sqrt{274} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4-2\sqrt{274}}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±2\sqrt{274}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 4 ਵਿੱਚੋਂ 2\sqrt{274} ਨੂੰ ਘਟਾਓ।
x=-\frac{\sqrt{274}}{2}+1
4-2\sqrt{274} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{274}}{2}+1 x=-\frac{\sqrt{274}}{2}+1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-4x-135=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
2x^{2}-4x-135-\left(-135\right)=-\left(-135\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 135 ਨੂੰ ਜੋੜੋ।
2x^{2}-4x=-\left(-135\right)
-135 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
2x^{2}-4x=135
0 ਵਿੱਚੋਂ -135 ਨੂੰ ਘਟਾਓ।
\frac{2x^{2}-4x}{2}=\frac{135}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{4}{2}\right)x=\frac{135}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-2x=\frac{135}{2}
-4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x+1=\frac{135}{2}+1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-2x+1=\frac{137}{2}
\frac{135}{2} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x-1\right)^{2}=\frac{137}{2}
ਫੈਕਟਰ x^{2}-2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{137}{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-1=\frac{\sqrt{274}}{2} x-1=-\frac{\sqrt{274}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{274}}{2}+1 x=-\frac{\sqrt{274}}{2}+1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।