ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}-14x-54=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-54\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -14 ਨੂੰ b ਲਈ, ਅਤੇ -54 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-54\right)}}{2\times 2}
-14 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-14\right)±\sqrt{196-8\left(-54\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-14\right)±\sqrt{196+432}}{2\times 2}
-8 ਨੂੰ -54 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-14\right)±\sqrt{628}}{2\times 2}
196 ਨੂੰ 432 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-14\right)±2\sqrt{157}}{2\times 2}
628 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{14±2\sqrt{157}}{2\times 2}
-14 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 14 ਹੈ।
x=\frac{14±2\sqrt{157}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{157}+14}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{14±2\sqrt{157}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 14 ਨੂੰ 2\sqrt{157} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{157}+7}{2}
14+2\sqrt{157} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{14-2\sqrt{157}}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{14±2\sqrt{157}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 14 ਵਿੱਚੋਂ 2\sqrt{157} ਨੂੰ ਘਟਾਓ।
x=\frac{7-\sqrt{157}}{2}
14-2\sqrt{157} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{157}+7}{2} x=\frac{7-\sqrt{157}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-14x-54=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
2x^{2}-14x-54-\left(-54\right)=-\left(-54\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 54 ਨੂੰ ਜੋੜੋ।
2x^{2}-14x=-\left(-54\right)
-54 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
2x^{2}-14x=54
0 ਵਿੱਚੋਂ -54 ਨੂੰ ਘਟਾਓ।
\frac{2x^{2}-14x}{2}=\frac{54}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{14}{2}\right)x=\frac{54}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-7x=\frac{54}{2}
-14 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-7x=27
54 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=27+\left(-\frac{7}{2}\right)^{2}
-7, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{7}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{7}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-7x+\frac{49}{4}=27+\frac{49}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{7}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-7x+\frac{49}{4}=\frac{157}{4}
27 ਨੂੰ \frac{49}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{7}{2}\right)^{2}=\frac{157}{4}
ਫੈਕਟਰ x^{2}-7x+\frac{49}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{157}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{7}{2}=\frac{\sqrt{157}}{2} x-\frac{7}{2}=-\frac{\sqrt{157}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{157}+7}{2} x=\frac{7-\sqrt{157}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{7}{2} ਨੂੰ ਜੋੜੋ।