ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2x^{2}+3x=36
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
2x^{2}+3x-36=36-36
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾਓ।
2x^{2}+3x-36=0
36 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-36\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, 3 ਨੂੰ b ਲਈ, ਅਤੇ -36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-3±\sqrt{9-4\times 2\left(-36\right)}}{2\times 2}
3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-3±\sqrt{9-8\left(-36\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-3±\sqrt{9+288}}{2\times 2}
-8 ਨੂੰ -36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-3±\sqrt{297}}{2\times 2}
9 ਨੂੰ 288 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3±3\sqrt{33}}{2\times 2}
297 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-3±3\sqrt{33}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{3\sqrt{33}-3}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-3±3\sqrt{33}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -3 ਨੂੰ 3\sqrt{33} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3\sqrt{33}-3}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-3±3\sqrt{33}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -3 ਵਿੱਚੋਂ 3\sqrt{33} ਨੂੰ ਘਟਾਓ।
x=\frac{3\sqrt{33}-3}{4} x=\frac{-3\sqrt{33}-3}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}+3x=36
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}+3x}{2}=\frac{36}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{3}{2}x=\frac{36}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{3}{2}x=18
36 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=18+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{4} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{3}{2}x+\frac{9}{16}=18+\frac{9}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{297}{16}
18 ਨੂੰ \frac{9}{16} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{3}{4}\right)^{2}=\frac{297}{16}
ਫੈਕਟਰ x^{2}+\frac{3}{2}x+\frac{9}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{297}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{4}=\frac{3\sqrt{33}}{4} x+\frac{3}{4}=-\frac{3\sqrt{33}}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3\sqrt{33}-3}{4} x=\frac{-3\sqrt{33}-3}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{4} ਨੂੰ ਘਟਾਓ।