x ਲਈ ਹਲ ਕਰੋ
x=-1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(2\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
2^{2}\left(\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
\left(2\sqrt{2-7x}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4\left(\sqrt{2-7x}\right)^{2}=\left(\sqrt{-36x}\right)^{2}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
4\left(2-7x\right)=\left(\sqrt{-36x}\right)^{2}
\sqrt{2-7x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 2-7x ਪ੍ਰਾਪਤ ਕਰੋ।
8-28x=\left(\sqrt{-36x}\right)^{2}
4 ਨੂੰ 2-7x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8-28x=-36x
\sqrt{-36x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ -36x ਪ੍ਰਾਪਤ ਕਰੋ।
8-28x+36x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 36x ਜੋੜੋ।
8+8x=0
8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -28x ਅਤੇ 36x ਨੂੰ ਮਿਲਾਓ।
8x=-8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x=\frac{-8}{8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-1
-8 ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ।
2\sqrt{2-7\left(-1\right)}=\sqrt{-36\left(-1\right)}
ਸਮੀਕਰਨ 2\sqrt{2-7x}=\sqrt{-36x} ਵਿੱਚ, x ਲਈ -1 ਨੂੰ ਬਦਲ ਦਿਓ।
6=6
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=-1 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=-1
ਸਮੀਕਰਨ 2\sqrt{2-7x}=\sqrt{-36x} ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}