ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{4\sqrt{3}}{9}\approx -0.769800359
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
\sqrt{\frac{1}{27}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{1}}{\sqrt{27}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
1 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
2\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
27=3^{2}\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{3^{2}\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{3^{2}}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 3^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
2\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{3\sqrt{3}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
2\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
2\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
2\times \frac{\sqrt{3}}{9} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{2\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
18=3^{2}\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{3^{2}\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{3^{2}}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 3^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
3 ਅਤੇ 3 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{\sqrt{4}}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
\sqrt{\frac{4}{3}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{4}}{\sqrt{3}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
4 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 2 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+4\sqrt{\frac{1}{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2}{\sqrt{3}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\sqrt{\frac{1}{2}}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{1}}{\sqrt{2}}
\sqrt{\frac{1}{2}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{1}}{\sqrt{2}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{1}{\sqrt{2}}
1 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{2}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+2\sqrt{2}
4 ਅਤੇ 2 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2\sqrt{3}}{9}-\frac{2\sqrt{3}}{3}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2\sqrt{2} ਅਤੇ 2\sqrt{2} ਨੂੰ ਮਿਲਾਓ।
\frac{2\sqrt{3}}{9}-\frac{3\times 2\sqrt{3}}{9}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 9 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 9 ਹੈ। \frac{2\sqrt{3}}{3} ਨੂੰ \frac{3}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{3}-3\times 2\sqrt{3}}{9}
ਕਿਉਂਕਿ \frac{2\sqrt{3}}{9} ਅਤੇ \frac{3\times 2\sqrt{3}}{9} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{2\sqrt{3}-6\sqrt{3}}{9}
2\sqrt{3}-3\times 2\sqrt{3} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-4\sqrt{3}}{9}
2\sqrt{3}-6\sqrt{3} ਵਿੱਚ ਗਿਣਤੀ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}