x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{390}}{15} \approx 1.316561177
x = -\frac{\sqrt{390}}{15} \approx -1.316561177
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
15x^{2}-24=2
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
15x^{2}=2+24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 24 ਜੋੜੋ।
15x^{2}=26
26 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 24 ਨੂੰ ਜੋੜੋ।
x^{2}=\frac{26}{15}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 15 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
15x^{2}-24=2
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
15x^{2}-24-2=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
15x^{2}-26=0
-26 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -24 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{0±\sqrt{0^{2}-4\times 15\left(-26\right)}}{2\times 15}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 15 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -26 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 15\left(-26\right)}}{2\times 15}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-60\left(-26\right)}}{2\times 15}
-4 ਨੂੰ 15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{1560}}{2\times 15}
-60 ਨੂੰ -26 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±2\sqrt{390}}{2\times 15}
1560 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±2\sqrt{390}}{30}
2 ਨੂੰ 15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{390}}{15}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±2\sqrt{390}}{30} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{\sqrt{390}}{15}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±2\sqrt{390}}{30} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}