ਮੁਲਾਂਕਣ ਕਰੋ
3+\frac{1}{x}
ਅੰਤਰ ਦੱਸੋ w.r.t. x
-\frac{1}{x^{2}}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2+\frac{1}{\frac{x+1}{x+1}-\frac{1}{x+1}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 1 ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
2+\frac{1}{\frac{x+1-1}{x+1}}
ਕਿਉਂਕਿ \frac{x+1}{x+1} ਅਤੇ \frac{1}{x+1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
2+\frac{1}{\frac{x}{x+1}}
x+1-1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2+\frac{x+1}{x}
1 ਨੂੰ \frac{x}{x+1} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{x}{x+1} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{2x}{x}+\frac{x+1}{x}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2 ਨੂੰ \frac{x}{x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2x+x+1}{x}
ਕਿਉਂਕਿ \frac{2x}{x} ਅਤੇ \frac{x+1}{x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{3x+1}{x}
2x+x+1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1}{x+1}-\frac{1}{x+1}})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 1 ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1-1}{x+1}})
ਕਿਉਂਕਿ \frac{x+1}{x+1} ਅਤੇ \frac{1}{x+1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x}{x+1}})
x+1-1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{x+1}{x})
1 ਨੂੰ \frac{x}{x+1} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{x}{x+1} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x}+\frac{x+1}{x})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2 ਨੂੰ \frac{x}{x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+x+1}{x})
ਕਿਉਂਕਿ \frac{2x}{x} ਅਤੇ \frac{x+1}{x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+1}{x})
2x+x+1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)
ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ ਲਈ, ਦੋ ਕਾਰਜਾਂ ਦੇ ਗੁਣਨਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਪਹਿਲੇ ਕਾਰਜ ਦਾ ਦੂਜੇ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ, + ਦੂਜੇ ਕਾਰਜ ਦਾ ਪਹਿਲੇ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਹੁੰਦਾ ਹੈ।
\left(3x^{1}+1\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3x^{1-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\left(3x^{1}+1\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 3x^{0}
ਸਪਸ਼ਟ ਕਰੋ।
3x^{1}\left(-1\right)x^{-2}-x^{-2}+\frac{1}{x}\times 3x^{0}
3x^{1}+1 ਨੂੰ -x^{-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
-3x^{1-2}-x^{-2}+3\times \frac{1}{x}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
-3\times \frac{1}{x}-x^{-2}+3\times \frac{1}{x}
ਸਪਸ਼ਟ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1}{x+1}-\frac{1}{x+1}})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 1 ਨੂੰ \frac{x+1}{x+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1-1}{x+1}})
ਕਿਉਂਕਿ \frac{x+1}{x+1} ਅਤੇ \frac{1}{x+1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x}{x+1}})
x+1-1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{x+1}{x})
1 ਨੂੰ \frac{x}{x+1} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{x}{x+1} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x}+\frac{x+1}{x})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2 ਨੂੰ \frac{x}{x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+x+1}{x})
ਕਿਉਂਕਿ \frac{2x}{x} ਅਤੇ \frac{x+1}{x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+1}{x})
2x+x+1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)-\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{x^{1}\times 3x^{1-1}-\left(3x^{1}+1\right)x^{1-1}}{\left(x^{1}\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{x^{1}\times 3x^{0}-\left(3x^{1}+1\right)x^{0}}{\left(x^{1}\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{x^{1}\times 3x^{0}-\left(3x^{1}x^{0}+x^{0}\right)}{\left(x^{1}\right)^{2}}
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤਦਿਆਂ ਵਿਸਥਾਰ ਕਰੋ।
\frac{3x^{1}-\left(3x^{1}+x^{0}\right)}{\left(x^{1}\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{3x^{1}-3x^{1}-x^{0}}{\left(x^{1}\right)^{2}}
ਬੇਲੋੜੀਆਂ ਬ੍ਰੈਕਟਾਂ ਨੂੰ ਹਟਾਓ।
\frac{\left(3-3\right)x^{1}-x^{0}}{\left(x^{1}\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
-\frac{x^{0}}{\left(x^{1}\right)^{2}}
3 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾਓ।
-\frac{x^{0}}{1^{2}x^{2}}
ਦੋ ਜਾਂ ਵੱਧ ਨੰਬਰਾਂ ਦੇ ਗੁਣਨਫਲ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਲਈ, ਹਰ ਨੰਬਰ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਓ ਅਤੇ ਉਹਨਾਂ ਦਾ ਗੁਣਨਫਲ ਕੱਢੋ।
-\frac{x^{0}}{x^{2}}
1 ਨੂੰ 2 ਪਾਵਰ ਤੱਕ ਵਧਾਓ।
\frac{-x^{0}}{x^{2}}
1 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
\left(-\frac{1}{1}\right)x^{-2}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਘਟਾ ਦਿਓ।
-x^{-2}
ਗਿਣਤੀ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}