t ਲਈ ਹਲ ਕਰੋ
t=\frac{500\ln(17)-500\ln(12)}{17}\approx 10.244314537
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
7+17e^{-0.034t}=19
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
17e^{-0.034t}+7=19
ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਅਤੇ ਲੋਗਾਰਿਥਮਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋ।
17e^{-0.034t}=12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7 ਨੂੰ ਘਟਾਓ।
e^{-0.034t}=\frac{12}{17}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 17 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\log(e^{-0.034t})=\log(\frac{12}{17})
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਲੋਗਾਰਿਥਮ ਲਓ।
-0.034t\log(e)=\log(\frac{12}{17})
ਪਾਵਰ ਤੱਕ ਵਧਾਏ ਗਏ ਨੰਬਰ ਦਾ ਲੋਗਾਰਿਥਮ ਨੰਬਰ ਦੇ ਲੋਗਾਰਿਥਮ ਨਾਲ ਪਾਵਰ ਦਾ ਗਣਨਫਲ ਹੁੰਦਾ ਹੈ।
-0.034t=\frac{\log(\frac{12}{17})}{\log(e)}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \log(e) ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
-0.034t=\log_{e}\left(\frac{12}{17}\right)
ਬੇਸ-ਦੇ-ਪਰਿਵਰਤਨ ਸੂਤਰ ਦੁਆਰਾ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)।
t=\frac{\ln(\frac{12}{17})}{-0.034}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -0.034 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}