ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

18x^{2}-30x+11=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 18\times 11}}{2\times 18}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 18 ਨੂੰ a ਲਈ, -30 ਨੂੰ b ਲਈ, ਅਤੇ 11 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-30\right)±\sqrt{900-4\times 18\times 11}}{2\times 18}
-30 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-30\right)±\sqrt{900-72\times 11}}{2\times 18}
-4 ਨੂੰ 18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-30\right)±\sqrt{900-792}}{2\times 18}
-72 ਨੂੰ 11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-30\right)±\sqrt{108}}{2\times 18}
900 ਨੂੰ -792 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-30\right)±6\sqrt{3}}{2\times 18}
108 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{30±6\sqrt{3}}{2\times 18}
-30 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 30 ਹੈ।
x=\frac{30±6\sqrt{3}}{36}
2 ਨੂੰ 18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6\sqrt{3}+30}{36}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{30±6\sqrt{3}}{36} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 30 ਨੂੰ 6\sqrt{3} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{3}+5}{6}
30+6\sqrt{3} ਨੂੰ 36 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{30-6\sqrt{3}}{36}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{30±6\sqrt{3}}{36} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 30 ਵਿੱਚੋਂ 6\sqrt{3} ਨੂੰ ਘਟਾਓ।
x=\frac{5-\sqrt{3}}{6}
30-6\sqrt{3} ਨੂੰ 36 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{3}+5}{6} x=\frac{5-\sqrt{3}}{6}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
18x^{2}-30x+11=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
18x^{2}-30x+11-11=-11
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 11 ਨੂੰ ਘਟਾਓ।
18x^{2}-30x=-11
11 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{18x^{2}-30x}{18}=-\frac{11}{18}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 18 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{30}{18}\right)x=-\frac{11}{18}
18 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 18 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{5}{3}x=-\frac{11}{18}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-30}{18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{11}{18}+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{6} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{11}{18}+\frac{25}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{1}{12}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{11}{18} ਨੂੰ \frac{25}{36} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{5}{6}\right)^{2}=\frac{1}{12}
ਫੈਕਟਰ x^{2}-\frac{5}{3}x+\frac{25}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{12}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{5}{6}=\frac{\sqrt{3}}{6} x-\frac{5}{6}=-\frac{\sqrt{3}}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{3}+5}{6} x=\frac{5-\sqrt{3}}{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{6} ਨੂੰ ਜੋੜੋ।