ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

174\times 10^{-5}x=-x^{2}
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
174\times \frac{1}{100000}x=-x^{2}
10 ਨੂੰ -5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{100000} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 174 ਅਤੇ \frac{1}{100000} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{87}{50000}x+x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x^{2} ਜੋੜੋ।
x\left(\frac{87}{50000}+x\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=-\frac{87}{50000}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ \frac{87}{50000}+x=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=-\frac{87}{50000}
ਵੇਰੀਏਬਲ x, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
174\times 10^{-5}x=-x^{2}
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
174\times \frac{1}{100000}x=-x^{2}
10 ਨੂੰ -5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{100000} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 174 ਅਤੇ \frac{1}{100000} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{87}{50000}x+x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x^{2} ਜੋੜੋ।
x^{2}+\frac{87}{50000}x=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\frac{87}{50000}±\sqrt{\left(\frac{87}{50000}\right)^{2}}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, \frac{87}{50000} ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2}
\left(\frac{87}{50000}\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{87}{50000} ਨੂੰ \frac{87}{50000} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=0
0 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{\frac{87}{25000}}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ -\frac{87}{50000} ਵਿੱਚੋਂ \frac{87}{50000} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=-\frac{87}{50000}
-\frac{87}{25000} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=0 x=-\frac{87}{50000}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=-\frac{87}{50000}
ਵੇਰੀਏਬਲ x, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
174\times 10^{-5}x=-x^{2}
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
174\times \frac{1}{100000}x=-x^{2}
10 ਨੂੰ -5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{100000} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 174 ਅਤੇ \frac{1}{100000} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{87}{50000}x+x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x^{2} ਜੋੜੋ।
x^{2}+\frac{87}{50000}x=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}+\frac{87}{50000}x+\left(\frac{87}{100000}\right)^{2}=\left(\frac{87}{100000}\right)^{2}
\frac{87}{50000}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{87}{100000} ਨਿਕਲੇ। ਫੇਰ, \frac{87}{100000} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}=\frac{7569}{10000000000}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{87}{100000} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(x+\frac{87}{100000}\right)^{2}=\frac{7569}{10000000000}
ਫੈਕਟਰ x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{87}{100000}\right)^{2}}=\sqrt{\frac{7569}{10000000000}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{87}{100000}=\frac{87}{100000} x+\frac{87}{100000}=-\frac{87}{100000}
ਸਪਸ਼ਟ ਕਰੋ।
x=0 x=-\frac{87}{50000}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{87}{100000} ਨੂੰ ਘਟਾਓ।
x=-\frac{87}{50000}
ਵੇਰੀਏਬਲ x, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।