ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=1 ab=15\left(-6\right)=-90
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 15m^{2}+am+bm-6 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -90 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-9 b=10
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 1 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(15m^{2}-9m\right)+\left(10m-6\right)
15m^{2}+m-6 ਨੂੰ \left(15m^{2}-9m\right)+\left(10m-6\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
3m\left(5m-3\right)+2\left(5m-3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 3m ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(5m-3\right)\left(3m+2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 5m-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
15m^{2}+m-6=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
m=\frac{-1±\sqrt{1^{2}-4\times 15\left(-6\right)}}{2\times 15}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
m=\frac{-1±\sqrt{1-4\times 15\left(-6\right)}}{2\times 15}
1 ਦਾ ਵਰਗ ਕਰੋ।
m=\frac{-1±\sqrt{1-60\left(-6\right)}}{2\times 15}
-4 ਨੂੰ 15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{-1±\sqrt{1+360}}{2\times 15}
-60 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{-1±\sqrt{361}}{2\times 15}
1 ਨੂੰ 360 ਵਿੱਚ ਜੋੜੋ।
m=\frac{-1±19}{2\times 15}
361 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
m=\frac{-1±19}{30}
2 ਨੂੰ 15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{18}{30}
ਹੁਣ, ਸਮੀਕਰਨ m=\frac{-1±19}{30} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -1 ਨੂੰ 19 ਵਿੱਚ ਜੋੜੋ।
m=\frac{3}{5}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{18}{30} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
m=-\frac{20}{30}
ਹੁਣ, ਸਮੀਕਰਨ m=\frac{-1±19}{30} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -1 ਵਿੱਚੋਂ 19 ਨੂੰ ਘਟਾਓ।
m=-\frac{2}{3}
10 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-20}{30} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
15m^{2}+m-6=15\left(m-\frac{3}{5}\right)\left(m-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{3}{5}ਅਤੇ x_{2} ਲਈ -\frac{2}{3} ਬਦਲ ਹੈ।
15m^{2}+m-6=15\left(m-\frac{3}{5}\right)\left(m+\frac{2}{3}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
15m^{2}+m-6=15\times \frac{5m-3}{5}\left(m+\frac{2}{3}\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ m ਵਿੱਚੋਂ \frac{3}{5} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
15m^{2}+m-6=15\times \frac{5m-3}{5}\times \frac{3m+2}{3}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2}{3} ਨੂੰ m ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
15m^{2}+m-6=15\times \frac{\left(5m-3\right)\left(3m+2\right)}{5\times 3}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{5m-3}{5} ਟਾਈਮਸ \frac{3m+2}{3} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
15m^{2}+m-6=15\times \frac{\left(5m-3\right)\left(3m+2\right)}{15}
5 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
15m^{2}+m-6=\left(5m-3\right)\left(3m+2\right)
15 ਅਤੇ 15 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 15 ਨੂੰ ਰੱਦ ਕਰੋ।