ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2\left(7x^{2}+6x-1\right)
2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
a+b=6 ab=7\left(-1\right)=-7
7x^{2}+6x-1 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 7x^{2}+ax+bx-1 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-1 b=7
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(7x^{2}-x\right)+\left(7x-1\right)
7x^{2}+6x-1 ਨੂੰ \left(7x^{2}-x\right)+\left(7x-1\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(7x-1\right)+7x-1
7x^{2}-x ਵਿੱਚੋਂ x ਫੈਕਟਰ ਕੱਢੋ।
\left(7x-1\right)\left(x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 7x-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
2\left(7x-1\right)\left(x+1\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
14x^{2}+12x-2=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-12±\sqrt{12^{2}-4\times 14\left(-2\right)}}{2\times 14}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-12±\sqrt{144-4\times 14\left(-2\right)}}{2\times 14}
12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-12±\sqrt{144-56\left(-2\right)}}{2\times 14}
-4 ਨੂੰ 14 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{144+112}}{2\times 14}
-56 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{256}}{2\times 14}
144 ਨੂੰ 112 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-12±16}{2\times 14}
256 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-12±16}{28}
2 ਨੂੰ 14 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4}{28}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±16}{28} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -12 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
x=\frac{1}{7}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{28} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{28}{28}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±16}{28} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -12 ਵਿੱਚੋਂ 16 ਨੂੰ ਘਟਾਓ।
x=-1
-28 ਨੂੰ 28 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{1}{7}ਅਤੇ x_{2} ਲਈ -1 ਬਦਲ ਹੈ।
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x+1\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
14x^{2}+12x-2=14\times \frac{7x-1}{7}\left(x+1\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ x ਵਿੱਚੋਂ \frac{1}{7} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
14x^{2}+12x-2=2\left(7x-1\right)\left(x+1\right)
14 ਅਤੇ 7 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 7 ਨੂੰ ਰੱਦ ਕਰੋ।