ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

14x\times \frac{14}{12+x}=4\left(x+12\right)
ਵੇਰੀਏਬਲ x, -12 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x+12 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{14\times 14}{12+x}x=4\left(x+12\right)
14\times \frac{14}{12+x} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{14\times 14}{12+x}x=4x+48
4 ਨੂੰ x+12 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{196}{12+x}x=4x+48
196 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਅਤੇ 14 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{196x}{12+x}=4x+48
\frac{196}{12+x}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{196x}{12+x}-4x=48
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{196x}{12+x}+\frac{-4x\left(12+x\right)}{12+x}=48
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -4x ਨੂੰ \frac{12+x}{12+x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{196x-4x\left(12+x\right)}{12+x}=48
ਕਿਉਂਕਿ \frac{196x}{12+x} ਅਤੇ \frac{-4x\left(12+x\right)}{12+x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{196x-48x-4x^{2}}{12+x}=48
196x-4x\left(12+x\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{148x-4x^{2}}{12+x}=48
196x-48x-4x^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{148x-4x^{2}}{12+x}-48=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 48 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{148x-4x^{2}}{12+x}-\frac{48\left(12+x\right)}{12+x}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 48 ਨੂੰ \frac{12+x}{12+x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{148x-4x^{2}-48\left(12+x\right)}{12+x}=0
ਕਿਉਂਕਿ \frac{148x-4x^{2}}{12+x} ਅਤੇ \frac{48\left(12+x\right)}{12+x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{148x-4x^{2}-576-48x}{12+x}=0
148x-4x^{2}-48\left(12+x\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{100x-4x^{2}-576}{12+x}=0
148x-4x^{2}-576-48x ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
100x-4x^{2}-576=0
ਵੇਰੀਏਬਲ x, -12 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x+12 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-4x^{2}+100x-576=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-100±\sqrt{100^{2}-4\left(-4\right)\left(-576\right)}}{2\left(-4\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -4 ਨੂੰ a ਲਈ, 100 ਨੂੰ b ਲਈ, ਅਤੇ -576 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-100±\sqrt{10000-4\left(-4\right)\left(-576\right)}}{2\left(-4\right)}
100 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-100±\sqrt{10000+16\left(-576\right)}}{2\left(-4\right)}
-4 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-100±\sqrt{10000-9216}}{2\left(-4\right)}
16 ਨੂੰ -576 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-100±\sqrt{784}}{2\left(-4\right)}
10000 ਨੂੰ -9216 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-100±28}{2\left(-4\right)}
784 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-100±28}{-8}
2 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{72}{-8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-100±28}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -100 ਨੂੰ 28 ਵਿੱਚ ਜੋੜੋ।
x=9
-72 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{128}{-8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-100±28}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -100 ਵਿੱਚੋਂ 28 ਨੂੰ ਘਟਾਓ।
x=16
-128 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=9 x=16
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
14x\times \frac{14}{12+x}=4\left(x+12\right)
ਵੇਰੀਏਬਲ x, -12 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x+12 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{14\times 14}{12+x}x=4\left(x+12\right)
14\times \frac{14}{12+x} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{14\times 14}{12+x}x=4x+48
4 ਨੂੰ x+12 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{196}{12+x}x=4x+48
196 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਅਤੇ 14 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{196x}{12+x}=4x+48
\frac{196}{12+x}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{196x}{12+x}-4x=48
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{196x}{12+x}+\frac{-4x\left(12+x\right)}{12+x}=48
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -4x ਨੂੰ \frac{12+x}{12+x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{196x-4x\left(12+x\right)}{12+x}=48
ਕਿਉਂਕਿ \frac{196x}{12+x} ਅਤੇ \frac{-4x\left(12+x\right)}{12+x} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{196x-48x-4x^{2}}{12+x}=48
196x-4x\left(12+x\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{148x-4x^{2}}{12+x}=48
196x-48x-4x^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
148x-4x^{2}=48\left(x+12\right)
ਵੇਰੀਏਬਲ x, -12 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x+12 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
148x-4x^{2}=48x+576
48 ਨੂੰ x+12 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
148x-4x^{2}-48x=576
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 48x ਨੂੰ ਘਟਾ ਦਿਓ।
100x-4x^{2}=576
100x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 148x ਅਤੇ -48x ਨੂੰ ਮਿਲਾਓ।
-4x^{2}+100x=576
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-4x^{2}+100x}{-4}=\frac{576}{-4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{100}{-4}x=\frac{576}{-4}
-4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-25x=\frac{576}{-4}
100 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-25x=-144
576 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-144+\left(-\frac{25}{2}\right)^{2}
-25, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{25}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{25}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-25x+\frac{625}{4}=-144+\frac{625}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{25}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-25x+\frac{625}{4}=\frac{49}{4}
-144 ਨੂੰ \frac{625}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{25}{2}\right)^{2}=\frac{49}{4}
ਫੈਕਟਰ x^{2}-25x+\frac{625}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{25}{2}=\frac{7}{2} x-\frac{25}{2}=-\frac{7}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=16 x=9
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{25}{2} ਨੂੰ ਜੋੜੋ।