x ਲਈ ਹਲ ਕਰੋ
x = \frac{250000 \sqrt{870}}{203} \approx 36324.830551115
x = -\frac{250000 \sqrt{870}}{203} \approx -36324.830551115
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Polynomial
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
120000 = 1.12 \cdot 81.2 { \left( \frac{ x }{ 1000 } \right) }^{ 2 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
120000=90.944\times \left(\frac{x}{1000}\right)^{2}
90.944 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1.12 ਅਤੇ 81.2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
120000=90.944\times \frac{x^{2}}{1000^{2}}
\frac{x}{1000} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
120000=90.944\times \frac{x^{2}}{1000000}
1000 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1000000 ਪ੍ਰਾਪਤ ਕਰੋ।
90.944\times \frac{x^{2}}{1000000}=120000
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{x^{2}}{1000000}=\frac{120000}{90.944}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 90.944 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\frac{x^{2}}{1000000}=\frac{120000000}{90944}
ਨਿਉਮਰੇਟਰਾਂ ਅਤੇ ਡੀਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਨੂੰ 1000 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{120000}{90.944} ਦਾ ਵਿਸਤਾਰ ਕਰੋ।
\frac{x^{2}}{1000000}=\frac{1875000}{1421}
64 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{120000000}{90944} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}=\frac{1875000}{1421}\times 1000000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 1000000 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}=\frac{1875000000000}{1421}
\frac{1875000000000}{1421} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1875000}{1421} ਅਤੇ 1000000 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x=\frac{250000\sqrt{870}}{203} x=-\frac{250000\sqrt{870}}{203}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
120000=90.944\times \left(\frac{x}{1000}\right)^{2}
90.944 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1.12 ਅਤੇ 81.2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
120000=90.944\times \frac{x^{2}}{1000^{2}}
\frac{x}{1000} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
120000=90.944\times \frac{x^{2}}{1000000}
1000 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1000000 ਪ੍ਰਾਪਤ ਕਰੋ।
90.944\times \frac{x^{2}}{1000000}=120000
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
90.944\times \frac{x^{2}}{1000000}-120000=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 120000 ਨੂੰ ਘਟਾ ਦਿਓ।
90.944x^{2}-120000000000=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 1000000 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{0^{2}-4\times 90.944\left(-120000000000\right)}}{2\times 90.944}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 90.944 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -120000000000 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 90.944\left(-120000000000\right)}}{2\times 90.944}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-363.776\left(-120000000000\right)}}{2\times 90.944}
-4 ਨੂੰ 90.944 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{43653120000000}}{2\times 90.944}
-363.776 ਨੂੰ -120000000000 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±224000\sqrt{870}}{2\times 90.944}
43653120000000 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±224000\sqrt{870}}{181.888}
2 ਨੂੰ 90.944 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{250000\sqrt{870}}{203}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±224000\sqrt{870}}{181.888} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{250000\sqrt{870}}{203}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±224000\sqrt{870}}{181.888} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{250000\sqrt{870}}{203} x=-\frac{250000\sqrt{870}}{203}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}