y ਲਈ ਹਲ ਕਰੋ
y = -\frac{31}{14} = -2\frac{3}{14} \approx -2.214285714
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{12\times 19}{7}-2y=37
12\times \frac{19}{7} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{228}{7}-2y=37
228 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 19 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-2y=37-\frac{228}{7}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{228}{7} ਨੂੰ ਘਟਾ ਦਿਓ।
-2y=\frac{259}{7}-\frac{228}{7}
37 ਨੂੰ \frac{259}{7} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
-2y=\frac{259-228}{7}
ਕਿਉਂਕਿ \frac{259}{7} ਅਤੇ \frac{228}{7} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-2y=\frac{31}{7}
31 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 259 ਵਿੱਚੋਂ 228 ਨੂੰ ਘਟਾ ਦਿਓ।
y=\frac{\frac{31}{7}}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{31}{7\left(-2\right)}
\frac{\frac{31}{7}}{-2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
y=\frac{31}{-14}
-14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ -2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
y=-\frac{31}{14}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{31}{-14} ਨੂੰ -\frac{31}{14} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}