ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=68 ab=12\times 63=756
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 12y^{2}+ay+by+63 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,756 2,378 3,252 4,189 6,126 7,108 9,84 12,63 14,54 18,42 21,36 27,28
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 756 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+756=757 2+378=380 3+252=255 4+189=193 6+126=132 7+108=115 9+84=93 12+63=75 14+54=68 18+42=60 21+36=57 27+28=55
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=14 b=54
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 68 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(12y^{2}+14y\right)+\left(54y+63\right)
12y^{2}+68y+63 ਨੂੰ \left(12y^{2}+14y\right)+\left(54y+63\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2y\left(6y+7\right)+9\left(6y+7\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2y ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 9 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(6y+7\right)\left(2y+9\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 6y+7 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
12y^{2}+68y+63=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
y=\frac{-68±\sqrt{68^{2}-4\times 12\times 63}}{2\times 12}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y=\frac{-68±\sqrt{4624-4\times 12\times 63}}{2\times 12}
68 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-68±\sqrt{4624-48\times 63}}{2\times 12}
-4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-68±\sqrt{4624-3024}}{2\times 12}
-48 ਨੂੰ 63 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-68±\sqrt{1600}}{2\times 12}
4624 ਨੂੰ -3024 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-68±40}{2\times 12}
1600 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{-68±40}{24}
2 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=-\frac{28}{24}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{-68±40}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -68 ਨੂੰ 40 ਵਿੱਚ ਜੋੜੋ।
y=-\frac{7}{6}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-28}{24} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
y=-\frac{108}{24}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{-68±40}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -68 ਵਿੱਚੋਂ 40 ਨੂੰ ਘਟਾਓ।
y=-\frac{9}{2}
12 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-108}{24} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
12y^{2}+68y+63=12\left(y-\left(-\frac{7}{6}\right)\right)\left(y-\left(-\frac{9}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -\frac{7}{6}ਅਤੇ x_{2} ਲਈ -\frac{9}{2} ਬਦਲ ਹੈ।
12y^{2}+68y+63=12\left(y+\frac{7}{6}\right)\left(y+\frac{9}{2}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
12y^{2}+68y+63=12\times \frac{6y+7}{6}\left(y+\frac{9}{2}\right)
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{7}{6} ਨੂੰ y ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
12y^{2}+68y+63=12\times \frac{6y+7}{6}\times \frac{2y+9}{2}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{9}{2} ਨੂੰ y ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
12y^{2}+68y+63=12\times \frac{\left(6y+7\right)\left(2y+9\right)}{6\times 2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{6y+7}{6} ਟਾਈਮਸ \frac{2y+9}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
12y^{2}+68y+63=12\times \frac{\left(6y+7\right)\left(2y+9\right)}{12}
6 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
12y^{2}+68y+63=\left(6y+7\right)\left(2y+9\right)
12 ਅਤੇ 12 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 12 ਨੂੰ ਰੱਦ ਕਰੋ।