x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{1+\sqrt{59}i}{12}\approx 0.083333333+0.640095479i
x=\frac{-\sqrt{59}i+1}{12}\approx 0.083333333-0.640095479i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
12x^{2}-2x+5=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 12\times 5}}{2\times 12}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 12 ਨੂੰ a ਲਈ, -2 ਨੂੰ b ਲਈ, ਅਤੇ 5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-2\right)±\sqrt{4-4\times 12\times 5}}{2\times 12}
-2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4-48\times 5}}{2\times 12}
-4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4-240}}{2\times 12}
-48 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{-236}}{2\times 12}
4 ਨੂੰ -240 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-2\right)±2\sqrt{59}i}{2\times 12}
-236 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{2±2\sqrt{59}i}{2\times 12}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
x=\frac{2±2\sqrt{59}i}{24}
2 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2+2\sqrt{59}i}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±2\sqrt{59}i}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 2 ਨੂੰ 2i\sqrt{59} ਵਿੱਚ ਜੋੜੋ।
x=\frac{1+\sqrt{59}i}{12}
2+2i\sqrt{59} ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{59}i+2}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±2\sqrt{59}i}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 2 ਵਿੱਚੋਂ 2i\sqrt{59} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{59}i+1}{12}
2-2i\sqrt{59} ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{1+\sqrt{59}i}{12} x=\frac{-\sqrt{59}i+1}{12}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
12x^{2}-2x+5=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
12x^{2}-2x+5-5=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
12x^{2}-2x=-5
5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{12x^{2}-2x}{12}=-\frac{5}{12}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{2}{12}\right)x=-\frac{5}{12}
12 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 12 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{6}x=-\frac{5}{12}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-2}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=-\frac{5}{12}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{6}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{12} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{12} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{6}x+\frac{1}{144}=-\frac{5}{12}+\frac{1}{144}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{12} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{1}{6}x+\frac{1}{144}=-\frac{59}{144}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{5}{12} ਨੂੰ \frac{1}{144} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{1}{12}\right)^{2}=-\frac{59}{144}
ਫੈਕਟਰ x^{2}-\frac{1}{6}x+\frac{1}{144}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{-\frac{59}{144}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{12}=\frac{\sqrt{59}i}{12} x-\frac{1}{12}=-\frac{\sqrt{59}i}{12}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{1+\sqrt{59}i}{12} x=\frac{-\sqrt{59}i+1}{12}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{12} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}