ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

12\left(x^{2}-2x+1\right)+27=75
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12x^{2}-24x+12+27=75
12 ਨੂੰ x^{2}-2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}-24x+39=75
39 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 27 ਨੂੰ ਜੋੜੋ।
12x^{2}-24x+39-75=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 75 ਨੂੰ ਘਟਾ ਦਿਓ।
12x^{2}-24x-36=0
-36 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 39 ਵਿੱਚੋਂ 75 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x-3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a+b=-2 ab=1\left(-3\right)=-3
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx-3 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-3 b=1
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 ਨੂੰ \left(x^{2}-3x\right)+\left(x-3\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-3\right)+x-3
x^{2}-3x ਵਿੱਚੋਂ x ਫੈਕਟਰ ਕੱਢੋ।
\left(x-3\right)\left(x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=3 x=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-3=0 ਅਤੇ x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
12\left(x^{2}-2x+1\right)+27=75
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12x^{2}-24x+12+27=75
12 ਨੂੰ x^{2}-2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}-24x+39=75
39 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 27 ਨੂੰ ਜੋੜੋ।
12x^{2}-24x+39-75=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 75 ਨੂੰ ਘਟਾ ਦਿਓ।
12x^{2}-24x-36=0
-36 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 39 ਵਿੱਚੋਂ 75 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 12\left(-36\right)}}{2\times 12}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 12 ਨੂੰ a ਲਈ, -24 ਨੂੰ b ਲਈ, ਅਤੇ -36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-24\right)±\sqrt{576-4\times 12\left(-36\right)}}{2\times 12}
-24 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{576-48\left(-36\right)}}{2\times 12}
-4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{576+1728}}{2\times 12}
-48 ਨੂੰ -36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{2304}}{2\times 12}
576 ਨੂੰ 1728 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-24\right)±48}{2\times 12}
2304 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{24±48}{2\times 12}
-24 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 24 ਹੈ।
x=\frac{24±48}{24}
2 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{72}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{24±48}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 24 ਨੂੰ 48 ਵਿੱਚ ਜੋੜੋ।
x=3
72 ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{24}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{24±48}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 24 ਵਿੱਚੋਂ 48 ਨੂੰ ਘਟਾਓ।
x=-1
-24 ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=3 x=-1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
12\left(x^{2}-2x+1\right)+27=75
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12x^{2}-24x+12+27=75
12 ਨੂੰ x^{2}-2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}-24x+39=75
39 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 27 ਨੂੰ ਜੋੜੋ।
12x^{2}-24x=75-39
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 39 ਨੂੰ ਘਟਾ ਦਿਓ।
12x^{2}-24x=36
36 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 75 ਵਿੱਚੋਂ 39 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{12x^{2}-24x}{12}=\frac{36}{12}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{24}{12}\right)x=\frac{36}{12}
12 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 12 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-2x=\frac{36}{12}
-24 ਨੂੰ 12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x=3
36 ਨੂੰ 12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-2x+1=3+1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-2x+1=4
3 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x-1\right)^{2}=4
ਫੈਕਟਰ x^{2}-2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-1=2 x-1=-2
ਸਪਸ਼ਟ ਕਰੋ।
x=3 x=-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।