ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

12x^{2}+25x-45=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-25±\sqrt{25^{2}-4\times 12\left(-45\right)}}{2\times 12}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 12 ਨੂੰ a ਲਈ, 25 ਨੂੰ b ਲਈ, ਅਤੇ -45 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-25±\sqrt{625-4\times 12\left(-45\right)}}{2\times 12}
25 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-25±\sqrt{625-48\left(-45\right)}}{2\times 12}
-4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-25±\sqrt{625+2160}}{2\times 12}
-48 ਨੂੰ -45 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-25±\sqrt{2785}}{2\times 12}
625 ਨੂੰ 2160 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-25±\sqrt{2785}}{24}
2 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{2785}-25}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-25±\sqrt{2785}}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -25 ਨੂੰ \sqrt{2785} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{2785}-25}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-25±\sqrt{2785}}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -25 ਵਿੱਚੋਂ \sqrt{2785} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{2785}-25}{24} x=\frac{-\sqrt{2785}-25}{24}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
12x^{2}+25x-45=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
12x^{2}+25x-45-\left(-45\right)=-\left(-45\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 45 ਨੂੰ ਜੋੜੋ।
12x^{2}+25x=-\left(-45\right)
-45 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
12x^{2}+25x=45
0 ਵਿੱਚੋਂ -45 ਨੂੰ ਘਟਾਓ।
\frac{12x^{2}+25x}{12}=\frac{45}{12}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{25}{12}x=\frac{45}{12}
12 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 12 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{25}{12}x=\frac{15}{4}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{45}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{25}{12}x+\left(\frac{25}{24}\right)^{2}=\frac{15}{4}+\left(\frac{25}{24}\right)^{2}
\frac{25}{12}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{25}{24} ਨਿਕਲੇ। ਫੇਰ, \frac{25}{24} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{15}{4}+\frac{625}{576}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{25}{24} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{2785}{576}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{15}{4} ਨੂੰ \frac{625}{576} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{25}{24}\right)^{2}=\frac{2785}{576}
ਫੈਕਟਰ x^{2}+\frac{25}{12}x+\frac{625}{576}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{25}{24}\right)^{2}}=\sqrt{\frac{2785}{576}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{25}{24}=\frac{\sqrt{2785}}{24} x+\frac{25}{24}=-\frac{\sqrt{2785}}{24}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{2785}-25}{24} x=\frac{-\sqrt{2785}-25}{24}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{25}{24} ਨੂੰ ਘਟਾਓ।