ਮੁਲਾਂਕਣ ਕਰੋ
\frac{7\sqrt{3}}{6}\approx 2.020725942
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{12\times \frac{\sqrt{1}}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{\frac{1}{6}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{1}}{\sqrt{6}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{12\times \frac{1}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
1 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{6} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{6}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{12\times \frac{\sqrt{6}}{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{6} ਦਾ ਸਕ੍ਵੇਅਰ 6 ਹੈ।
\frac{2\sqrt{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
12 ਅਤੇ 6 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 6 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{\sqrt{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{\frac{7}{12}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{7}}{\sqrt{12}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{2\sqrt{3}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
12=2^{2}\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2^{2}\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2^{2}}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 2^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{7}}{2\sqrt{3}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
\sqrt{7} ਅਤੇ \sqrt{3} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{20+1}{2}}
20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{21}{2}}
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}}{\sqrt{2}}
\sqrt{\frac{21}{2}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{21}}{\sqrt{2}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{21}}{\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{2}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
\sqrt{21} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
\frac{2\sqrt{6}\sqrt{21}}{3\times 6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{2\sqrt{6}}{3} ਟਾਈਮਸ \frac{\sqrt{21}}{6} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\sqrt{6}\sqrt{21}}{3\times 3}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2}\times \frac{\sqrt{42}}{2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{6}\sqrt{21}}{3\times 3} ਟਾਈਮਸ \frac{1}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\sqrt{6}\sqrt{21}\sqrt{42}}{3\times 3\times 2\times 2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2} ਟਾਈਮਸ \frac{\sqrt{42}}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\sqrt{6}\sqrt{21}\sqrt{6}\sqrt{7}}{3\times 3\times 2\times 2}
42=6\times 7 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{6\times 7} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{6}\sqrt{7} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{6\sqrt{21}\sqrt{7}}{3\times 3\times 2\times 2}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{6} ਅਤੇ \sqrt{6} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{6\sqrt{7}\sqrt{3}\sqrt{7}}{3\times 3\times 2\times 2}
21=7\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{7\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{7}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{6\times 7\sqrt{3}}{3\times 3\times 2\times 2}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{7} ਅਤੇ \sqrt{7} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{42\sqrt{3}}{3\times 3\times 2\times 2}
42 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 7 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{42\sqrt{3}}{9\times 2\times 2}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{42\sqrt{3}}{18\times 2}
18 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{42\sqrt{3}}{36}
36 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{7}{6}\sqrt{3}
42\sqrt{3} ਨੂੰ 36 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{7}{6}\sqrt{3} ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}