x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{5}}{3}\approx 0.745355992
x=-\frac{\sqrt{5}}{3}\approx -0.745355992
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
12=\left(1-3x\right)^{2}+\left(1+3x\right)\left(1+3x\right)
\left(1-3x\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1-3x ਅਤੇ 1-3x ਨੂੰ ਗੁਣਾ ਕਰੋ।
12=\left(1-3x\right)^{2}+\left(1+3x\right)^{2}
\left(1+3x\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1+3x ਅਤੇ 1+3x ਨੂੰ ਗੁਣਾ ਕਰੋ।
12=1-6x+9x^{2}+\left(1+3x\right)^{2}
\left(1-3x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12=1-6x+9x^{2}+1+6x+9x^{2}
\left(1+3x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12=2-6x+9x^{2}+6x+9x^{2}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
12=2+9x^{2}+9x^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
12=2+18x^{2}
18x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x^{2} ਅਤੇ 9x^{2} ਨੂੰ ਮਿਲਾਓ।
2+18x^{2}=12
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
18x^{2}=12-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
18x^{2}=10
10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}=\frac{10}{18}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 18 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=\frac{5}{9}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{10}{18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
12=\left(1-3x\right)^{2}+\left(1+3x\right)\left(1+3x\right)
\left(1-3x\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1-3x ਅਤੇ 1-3x ਨੂੰ ਗੁਣਾ ਕਰੋ।
12=\left(1-3x\right)^{2}+\left(1+3x\right)^{2}
\left(1+3x\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1+3x ਅਤੇ 1+3x ਨੂੰ ਗੁਣਾ ਕਰੋ।
12=1-6x+9x^{2}+\left(1+3x\right)^{2}
\left(1-3x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12=1-6x+9x^{2}+1+6x+9x^{2}
\left(1+3x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
12=2-6x+9x^{2}+6x+9x^{2}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
12=2+9x^{2}+9x^{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
12=2+18x^{2}
18x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x^{2} ਅਤੇ 9x^{2} ਨੂੰ ਮਿਲਾਓ।
2+18x^{2}=12
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
2+18x^{2}-12=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
-10+18x^{2}=0
-10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
18x^{2}-10=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
x=\frac{0±\sqrt{0^{2}-4\times 18\left(-10\right)}}{2\times 18}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 18 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -10 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 18\left(-10\right)}}{2\times 18}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-72\left(-10\right)}}{2\times 18}
-4 ਨੂੰ 18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{720}}{2\times 18}
-72 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±12\sqrt{5}}{2\times 18}
720 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±12\sqrt{5}}{36}
2 ਨੂੰ 18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{5}}{3}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±12\sqrt{5}}{36} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{\sqrt{5}}{3}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±12\sqrt{5}}{36} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}