ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-10x^{2}+110x=2800
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
-10x^{2}+110x-2800=2800-2800
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2800 ਨੂੰ ਘਟਾਓ।
-10x^{2}+110x-2800=0
2800 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x=\frac{-110±\sqrt{110^{2}-4\left(-10\right)\left(-2800\right)}}{2\left(-10\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -10 ਨੂੰ a ਲਈ, 110 ਨੂੰ b ਲਈ, ਅਤੇ -2800 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-110±\sqrt{12100-4\left(-10\right)\left(-2800\right)}}{2\left(-10\right)}
110 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-110±\sqrt{12100+40\left(-2800\right)}}{2\left(-10\right)}
-4 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-110±\sqrt{12100-112000}}{2\left(-10\right)}
40 ਨੂੰ -2800 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-110±\sqrt{-99900}}{2\left(-10\right)}
12100 ਨੂੰ -112000 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-110±30\sqrt{111}i}{2\left(-10\right)}
-99900 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-110±30\sqrt{111}i}{-20}
2 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-110+30\sqrt{111}i}{-20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-110±30\sqrt{111}i}{-20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -110 ਨੂੰ 30i\sqrt{111} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3\sqrt{111}i+11}{2}
-110+30i\sqrt{111} ਨੂੰ -20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-30\sqrt{111}i-110}{-20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-110±30\sqrt{111}i}{-20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -110 ਵਿੱਚੋਂ 30i\sqrt{111} ਨੂੰ ਘਟਾਓ।
x=\frac{11+3\sqrt{111}i}{2}
-110-30i\sqrt{111} ਨੂੰ -20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-3\sqrt{111}i+11}{2} x=\frac{11+3\sqrt{111}i}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-10x^{2}+110x=2800
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-10x^{2}+110x}{-10}=\frac{2800}{-10}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -10 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{110}{-10}x=\frac{2800}{-10}
-10 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -10 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-11x=\frac{2800}{-10}
110 ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-11x=-280
2800 ਨੂੰ -10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-280+\left(-\frac{11}{2}\right)^{2}
-11, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{11}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{11}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-11x+\frac{121}{4}=-280+\frac{121}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{11}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-11x+\frac{121}{4}=-\frac{999}{4}
-280 ਨੂੰ \frac{121}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{11}{2}\right)^{2}=-\frac{999}{4}
ਫੈਕਟਰ x^{2}-11x+\frac{121}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{-\frac{999}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{11}{2}=\frac{3\sqrt{111}i}{2} x-\frac{11}{2}=-\frac{3\sqrt{111}i}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{11+3\sqrt{111}i}{2} x=\frac{-3\sqrt{111}i+11}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{11}{2} ਨੂੰ ਜੋੜੋ।