x ਲਈ ਹਲ ਕਰੋ
x = \frac{10 \sqrt{51} + 100}{49} \approx 3.4982507
x=\frac{100-10\sqrt{51}}{49}\approx 0.583381953
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
1+20x-4.9x^{2}=11
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
1+20x-4.9x^{2}-11=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 11 ਨੂੰ ਘਟਾ ਦਿਓ।
-10+20x-4.9x^{2}=0
-10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 11 ਨੂੰ ਘਟਾ ਦਿਓ।
-4.9x^{2}+20x-10=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-20±\sqrt{20^{2}-4\left(-4.9\right)\left(-10\right)}}{2\left(-4.9\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -4.9 ਨੂੰ a ਲਈ, 20 ਨੂੰ b ਲਈ, ਅਤੇ -10 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-20±\sqrt{400-4\left(-4.9\right)\left(-10\right)}}{2\left(-4.9\right)}
20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-20±\sqrt{400+19.6\left(-10\right)}}{2\left(-4.9\right)}
-4 ਨੂੰ -4.9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{400-196}}{2\left(-4.9\right)}
19.6 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-20±\sqrt{204}}{2\left(-4.9\right)}
400 ਨੂੰ -196 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-20±2\sqrt{51}}{2\left(-4.9\right)}
204 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-20±2\sqrt{51}}{-9.8}
2 ਨੂੰ -4.9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{51}-20}{-9.8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±2\sqrt{51}}{-9.8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -20 ਨੂੰ 2\sqrt{51} ਵਿੱਚ ਜੋੜੋ।
x=\frac{100-10\sqrt{51}}{49}
-20+2\sqrt{51} ਨੂੰ -9.8 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -20+2\sqrt{51}ਨੂੰ -9.8 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{51}-20}{-9.8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-20±2\sqrt{51}}{-9.8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -20 ਵਿੱਚੋਂ 2\sqrt{51} ਨੂੰ ਘਟਾਓ।
x=\frac{10\sqrt{51}+100}{49}
-20-2\sqrt{51} ਨੂੰ -9.8 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -20-2\sqrt{51}ਨੂੰ -9.8 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{100-10\sqrt{51}}{49} x=\frac{10\sqrt{51}+100}{49}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
1+20x-4.9x^{2}=11
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
20x-4.9x^{2}=11-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
20x-4.9x^{2}=10
10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
-4.9x^{2}+20x=10
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-4.9x^{2}+20x}{-4.9}=\frac{10}{-4.9}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -4.9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
x^{2}+\frac{20}{-4.9}x=\frac{10}{-4.9}
-4.9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -4.9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{200}{49}x=\frac{10}{-4.9}
20 ਨੂੰ -4.9 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 20ਨੂੰ -4.9 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{200}{49}x=-\frac{100}{49}
10 ਨੂੰ -4.9 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 10ਨੂੰ -4.9 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{200}{49}x+\left(-\frac{100}{49}\right)^{2}=-\frac{100}{49}+\left(-\frac{100}{49}\right)^{2}
-\frac{200}{49}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{100}{49} ਨਿਕਲੇ। ਫੇਰ, -\frac{100}{49} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=-\frac{100}{49}+\frac{10000}{2401}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{100}{49} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=\frac{5100}{2401}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{100}{49} ਨੂੰ \frac{10000}{2401} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{100}{49}\right)^{2}=\frac{5100}{2401}
ਫੈਕਟਰ x^{2}-\frac{200}{49}x+\frac{10000}{2401}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{100}{49}\right)^{2}}=\sqrt{\frac{5100}{2401}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{100}{49}=\frac{10\sqrt{51}}{49} x-\frac{100}{49}=-\frac{10\sqrt{51}}{49}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{10\sqrt{51}+100}{49} x=\frac{100-10\sqrt{51}}{49}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{100}{49} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}