ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-20 ab=11\left(-4\right)=-44
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 11x^{2}+ax+bx-4 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-44 2,-22 4,-11
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -44 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-44=-43 2-22=-20 4-11=-7
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-22 b=2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -20 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(11x^{2}-22x\right)+\left(2x-4\right)
11x^{2}-20x-4 ਨੂੰ \left(11x^{2}-22x\right)+\left(2x-4\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
11x\left(x-2\right)+2\left(x-2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 11x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-2\right)\left(11x+2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
11x^{2}-20x-4=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 11\left(-4\right)}}{2\times 11}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-20\right)±\sqrt{400-4\times 11\left(-4\right)}}{2\times 11}
-20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{400-44\left(-4\right)}}{2\times 11}
-4 ਨੂੰ 11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{400+176}}{2\times 11}
-44 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{576}}{2\times 11}
400 ਨੂੰ 176 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-20\right)±24}{2\times 11}
576 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{20±24}{2\times 11}
-20 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 20 ਹੈ।
x=\frac{20±24}{22}
2 ਨੂੰ 11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{44}{22}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{20±24}{22} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 20 ਨੂੰ 24 ਵਿੱਚ ਜੋੜੋ।
x=2
44 ਨੂੰ 22 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{4}{22}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{20±24}{22} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 20 ਵਿੱਚੋਂ 24 ਨੂੰ ਘਟਾਓ।
x=-\frac{2}{11}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-4}{22} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
11x^{2}-20x-4=11\left(x-2\right)\left(x-\left(-\frac{2}{11}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 2ਅਤੇ x_{2} ਲਈ -\frac{2}{11} ਬਦਲ ਹੈ।
11x^{2}-20x-4=11\left(x-2\right)\left(x+\frac{2}{11}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
11x^{2}-20x-4=11\left(x-2\right)\times \frac{11x+2}{11}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2}{11} ਨੂੰ x ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
11x^{2}-20x-4=\left(x-2\right)\left(11x+2\right)
11 ਅਤੇ 11 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 11 ਨੂੰ ਰੱਦ ਕਰੋ।