ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

10x^{2}-33x+20=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 10\times 20}}{2\times 10}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 10 ਨੂੰ a ਦੇ ਨਾਲ, -33 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 20 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{33±17}{20}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=\frac{5}{2} x=\frac{4}{5}
x=\frac{33±17}{20} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
10\left(x-\frac{5}{2}\right)\left(x-\frac{4}{5}\right)\leq 0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-\frac{5}{2}\geq 0 x-\frac{4}{5}\leq 0
ਗੁਣਜ ਨੂੰ ≤0 ਹੋਣ ਲਈ, x-\frac{5}{2} ਅਤੇ x-\frac{4}{5} ਵੈਲਯੂਜ਼ ਵਿੱਚੋਂ ਇੱਕ ≥0 ਜਾਂ ਦੂਜੀ ≤0 ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। x-\frac{5}{2}\geq 0 ਅਤੇ x-\frac{4}{5}\leq 0 ਹੋਣ ‘ਤੇ ਮਾਮਲੇ ਉੱਪਰ ਵਿਚਾਰ ਕਰੋ।
x\in \emptyset
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਗ਼ਲਤ ਹੈ।
x-\frac{4}{5}\geq 0 x-\frac{5}{2}\leq 0
x-\frac{5}{2}\leq 0 ਅਤੇ x-\frac{4}{5}\geq 0 ਹੋਣ ‘ਤੇ ਮਾਮਲੇ ਉੱਪਰ ਵਿਚਾਰ ਕਰੋ।
x\in \begin{bmatrix}\frac{4}{5},\frac{5}{2}\end{bmatrix}
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x\in \left[\frac{4}{5},\frac{5}{2}\right] ਹੁੰਦਾ ਹੈ।
x\in \begin{bmatrix}\frac{4}{5},\frac{5}{2}\end{bmatrix}
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।