x ਲਈ ਹਲ ਕਰੋ
x=\frac{9\sqrt{6}}{10}-\frac{8}{5}\approx 0.604540769
x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}\approx -3.804540769
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
10x^{2}+32x-23=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-32±\sqrt{32^{2}-4\times 10\left(-23\right)}}{2\times 10}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 10 ਨੂੰ a ਲਈ, 32 ਨੂੰ b ਲਈ, ਅਤੇ -23 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-32±\sqrt{1024-4\times 10\left(-23\right)}}{2\times 10}
32 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-32±\sqrt{1024-40\left(-23\right)}}{2\times 10}
-4 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-32±\sqrt{1024+920}}{2\times 10}
-40 ਨੂੰ -23 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-32±\sqrt{1944}}{2\times 10}
1024 ਨੂੰ 920 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-32±18\sqrt{6}}{2\times 10}
1944 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-32±18\sqrt{6}}{20}
2 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{18\sqrt{6}-32}{20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-32±18\sqrt{6}}{20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -32 ਨੂੰ 18\sqrt{6} ਵਿੱਚ ਜੋੜੋ।
x=\frac{9\sqrt{6}}{10}-\frac{8}{5}
-32+18\sqrt{6} ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-18\sqrt{6}-32}{20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-32±18\sqrt{6}}{20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -32 ਵਿੱਚੋਂ 18\sqrt{6} ਨੂੰ ਘਟਾਓ।
x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}
-32-18\sqrt{6} ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{9\sqrt{6}}{10}-\frac{8}{5} x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
10x^{2}+32x-23=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
10x^{2}+32x-23-\left(-23\right)=-\left(-23\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 23 ਨੂੰ ਜੋੜੋ।
10x^{2}+32x=-\left(-23\right)
-23 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
10x^{2}+32x=23
0 ਵਿੱਚੋਂ -23 ਨੂੰ ਘਟਾਓ।
\frac{10x^{2}+32x}{10}=\frac{23}{10}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{32}{10}x=\frac{23}{10}
10 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 10 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{16}{5}x=\frac{23}{10}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{32}{10} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{16}{5}x+\left(\frac{8}{5}\right)^{2}=\frac{23}{10}+\left(\frac{8}{5}\right)^{2}
\frac{16}{5}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{8}{5} ਨਿਕਲੇ। ਫੇਰ, \frac{8}{5} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{23}{10}+\frac{64}{25}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{8}{5} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{16}{5}x+\frac{64}{25}=\frac{243}{50}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{23}{10} ਨੂੰ \frac{64}{25} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{8}{5}\right)^{2}=\frac{243}{50}
ਫੈਕਟਰ x^{2}+\frac{16}{5}x+\frac{64}{25}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{8}{5}\right)^{2}}=\sqrt{\frac{243}{50}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{8}{5}=\frac{9\sqrt{6}}{10} x+\frac{8}{5}=-\frac{9\sqrt{6}}{10}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{9\sqrt{6}}{10}-\frac{8}{5} x=-\frac{9\sqrt{6}}{10}-\frac{8}{5}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{8}{5} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}