x ਲਈ ਹਲ ਕਰੋ
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x=-12
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
10x^{2}+160=16x^{2}+64x+64
\left(-4x-8\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
10x^{2}+160-16x^{2}=64x+64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+160=64x+64
-6x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10x^{2} ਅਤੇ -16x^{2} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}+160-64x=64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64x ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+160-64x-64=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+96-64x=0
96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 160 ਵਿੱਚੋਂ 64 ਨੂੰ ਘਟਾ ਦਿਓ।
-3x^{2}+48-32x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
-3x^{2}-32x+48=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-32 ab=-3\times 48=-144
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -3x^{2}+ax+bx+48 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-144 2,-72 3,-48 4,-36 6,-24 8,-18 9,-16 12,-12
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -144 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-144=-143 2-72=-70 3-48=-45 4-36=-32 6-24=-18 8-18=-10 9-16=-7 12-12=0
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=4 b=-36
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -32 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-3x^{2}+4x\right)+\left(-36x+48\right)
-3x^{2}-32x+48 ਨੂੰ \left(-3x^{2}+4x\right)+\left(-36x+48\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-x\left(3x-4\right)-12\left(3x-4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -12 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(3x-4\right)\left(-x-12\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 3x-4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=\frac{4}{3} x=-12
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 3x-4=0 ਅਤੇ -x-12=0 ਨੂੰ ਹੱਲ ਕਰੋ।
10x^{2}+160=16x^{2}+64x+64
\left(-4x-8\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
10x^{2}+160-16x^{2}=64x+64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+160=64x+64
-6x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10x^{2} ਅਤੇ -16x^{2} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}+160-64x=64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64x ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+160-64x-64=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+96-64x=0
96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 160 ਵਿੱਚੋਂ 64 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-64x+96=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-6\right)\times 96}}{2\left(-6\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -6 ਨੂੰ a ਲਈ, -64 ਨੂੰ b ਲਈ, ਅਤੇ 96 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-64\right)±\sqrt{4096-4\left(-6\right)\times 96}}{2\left(-6\right)}
-64 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-64\right)±\sqrt{4096+24\times 96}}{2\left(-6\right)}
-4 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-64\right)±\sqrt{4096+2304}}{2\left(-6\right)}
24 ਨੂੰ 96 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-64\right)±\sqrt{6400}}{2\left(-6\right)}
4096 ਨੂੰ 2304 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-64\right)±80}{2\left(-6\right)}
6400 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{64±80}{2\left(-6\right)}
-64 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 64 ਹੈ।
x=\frac{64±80}{-12}
2 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{144}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{64±80}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 64 ਨੂੰ 80 ਵਿੱਚ ਜੋੜੋ।
x=-12
144 ਨੂੰ -12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{16}{-12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{64±80}{-12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 64 ਵਿੱਚੋਂ 80 ਨੂੰ ਘਟਾਓ।
x=\frac{4}{3}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-16}{-12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-12 x=\frac{4}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
10x^{2}+160=16x^{2}+64x+64
\left(-4x-8\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
10x^{2}+160-16x^{2}=64x+64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}+160=64x+64
-6x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10x^{2} ਅਤੇ -16x^{2} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}+160-64x=64
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 64x ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-64x=64-160
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 160 ਨੂੰ ਘਟਾ ਦਿਓ।
-6x^{2}-64x=-96
-96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 64 ਵਿੱਚੋਂ 160 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-6x^{2}-64x}{-6}=-\frac{96}{-6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{64}{-6}\right)x=-\frac{96}{-6}
-6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{32}{3}x=-\frac{96}{-6}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-64}{-6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{32}{3}x=16
-96 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{32}{3}x+\left(\frac{16}{3}\right)^{2}=16+\left(\frac{16}{3}\right)^{2}
\frac{32}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{16}{3} ਨਿਕਲੇ। ਫੇਰ, \frac{16}{3} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{32}{3}x+\frac{256}{9}=16+\frac{256}{9}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{16}{3} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{32}{3}x+\frac{256}{9}=\frac{400}{9}
16 ਨੂੰ \frac{256}{9} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{16}{3}\right)^{2}=\frac{400}{9}
ਫੈਕਟਰ x^{2}+\frac{32}{3}x+\frac{256}{9}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{16}{3}\right)^{2}}=\sqrt{\frac{400}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{16}{3}=\frac{20}{3} x+\frac{16}{3}=-\frac{20}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{4}{3} x=-12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{16}{3} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}