a ਲਈ ਹਲ ਕਰੋ
a=\frac{r}{10d}
d\neq 0
d ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}d=\frac{r}{10a}\text{, }&r\neq 0\text{ and }a\neq 0\\d\neq 0\text{, }&a=0\text{ and }r=0\end{matrix}\right.
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
10ad=r
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ d ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
10da=r
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{10da}{10d}=\frac{r}{10d}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10d ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{r}{10d}
10d ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 10d ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
10ad=r
ਵੇਰੀਏਬਲ d, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ d ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{10ad}{10a}=\frac{r}{10a}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10a ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
d=\frac{r}{10a}
10a ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 10a ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
d=\frac{r}{10a}\text{, }d\neq 0
ਵੇਰੀਏਬਲ d, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}