ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2-4x+x^{2}=34
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2-4x+x^{2}-34=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 34 ਨੂੰ ਘਟਾ ਦਿਓ।
-32-4x+x^{2}=0
-32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਵਿੱਚੋਂ 34 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-4x-32=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-4 ab=-32
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}-4x-32 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-32 2,-16 4,-8
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -32 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-32=-31 2-16=-14 4-8=-4
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-8 b=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -4 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x-8\right)\left(x+4\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x=8 x=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-8=0 ਅਤੇ x+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
2-4x+x^{2}=34
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
2-4x+x^{2}-34=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 34 ਨੂੰ ਘਟਾ ਦਿਓ।
-32-4x+x^{2}=0
-32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਵਿੱਚੋਂ 34 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-4x-32=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-4 ab=1\left(-32\right)=-32
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx-32 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-32 2,-16 4,-8
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -32 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-32=-31 2-16=-14 4-8=-4
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-8 b=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -4 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-8x\right)+\left(4x-32\right)
x^{2}-4x-32 ਨੂੰ \left(x^{2}-8x\right)+\left(4x-32\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-8\right)+4\left(x-8\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-8\right)\left(x+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-8 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=8 x=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-8=0 ਅਤੇ x+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\frac{1}{2}x^{2}-2x+1=17
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
\frac{1}{2}x^{2}-2x+1-17=17-17
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 17 ਨੂੰ ਘਟਾਓ।
\frac{1}{2}x^{2}-2x+1-17=0
17 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{1}{2}x^{2}-2x-16=0
1 ਵਿੱਚੋਂ 17 ਨੂੰ ਘਟਾਓ।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\left(-16\right)}}{2\times \frac{1}{2}}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ \frac{1}{2} ਨੂੰ a ਲਈ, -2 ਨੂੰ b ਲਈ, ਅਤੇ -16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\left(-16\right)}}{2\times \frac{1}{2}}
-2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4-2\left(-16\right)}}{2\times \frac{1}{2}}
-4 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times \frac{1}{2}}
-2 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times \frac{1}{2}}
4 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-2\right)±6}{2\times \frac{1}{2}}
36 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{2±6}{2\times \frac{1}{2}}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
x=\frac{2±6}{1}
2 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{8}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±6}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 2 ਨੂੰ 6 ਵਿੱਚ ਜੋੜੋ।
x=8
8 ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{4}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±6}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 2 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾਓ।
x=-4
-4 ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=8 x=-4
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{1}{2}x^{2}-2x+1=17
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{1}{2}x^{2}-2x+1-1=17-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।
\frac{1}{2}x^{2}-2x=17-1
1 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{1}{2}x^{2}-2x=16
17 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=\frac{16}{\frac{1}{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=\frac{16}{\frac{1}{2}}
\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \frac{1}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-4x=\frac{16}{\frac{1}{2}}
-2 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -2ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x=32
16 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 16ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x+\left(-2\right)^{2}=32+\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-4x+4=32+4
-2 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-4x+4=36
32 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(x-2\right)^{2}=36
ਫੈਕਟਰ x^{2}-4x+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{36}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-2=6 x-2=-6
ਸਪਸ਼ਟ ਕਰੋ।
x=8 x=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।