ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{2}x^{2}+8x+12=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-8±\sqrt{8^{2}-4\times \frac{1}{2}\times 12}}{2\times \frac{1}{2}}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ \frac{1}{2} ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ 12 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-8±\sqrt{64-4\times \frac{1}{2}\times 12}}{2\times \frac{1}{2}}
8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-8±\sqrt{64-2\times 12}}{2\times \frac{1}{2}}
-4 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{64-24}}{2\times \frac{1}{2}}
-2 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{40}}{2\times \frac{1}{2}}
64 ਨੂੰ -24 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-8±2\sqrt{10}}{2\times \frac{1}{2}}
40 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-8±2\sqrt{10}}{1}
2 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{10}-8}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±2\sqrt{10}}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 2\sqrt{10} ਵਿੱਚ ਜੋੜੋ।
x=2\sqrt{10}-8
-8+2\sqrt{10} ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{10}-8}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±2\sqrt{10}}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 2\sqrt{10} ਨੂੰ ਘਟਾਓ।
x=-2\sqrt{10}-8
-8-2\sqrt{10} ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=2\sqrt{10}-8 x=-2\sqrt{10}-8
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{1}{2}x^{2}+8x+12=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{1}{2}x^{2}+8x+12-12=-12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾਓ।
\frac{1}{2}x^{2}+8x=-12
12 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{\frac{1}{2}x^{2}+8x}{\frac{1}{2}}=-\frac{12}{\frac{1}{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+\frac{8}{\frac{1}{2}}x=-\frac{12}{\frac{1}{2}}
\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \frac{1}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+16x=-\frac{12}{\frac{1}{2}}
8 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 8ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+16x=-24
-12 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -12ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+16x+8^{2}=-24+8^{2}
16, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 8 ਨਿਕਲੇ। ਫੇਰ, 8 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+16x+64=-24+64
8 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+16x+64=40
-24 ਨੂੰ 64 ਵਿੱਚ ਜੋੜੋ।
\left(x+8\right)^{2}=40
ਫੈਕਟਰ x^{2}+16x+64। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+8\right)^{2}}=\sqrt{40}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+8=2\sqrt{10} x+8=-2\sqrt{10}
ਸਪਸ਼ਟ ਕਰੋ।
x=2\sqrt{10}-8 x=-2\sqrt{10}-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾਓ।