ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{2}x^{2}+4x-2=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-4±\sqrt{4^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ \frac{1}{2} ਨੂੰ a ਲਈ, 4 ਨੂੰ b ਲਈ, ਅਤੇ -2 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-4±\sqrt{16-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
4 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-4±\sqrt{16-2\left(-2\right)}}{2\times \frac{1}{2}}
-4 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-4±\sqrt{16+4}}{2\times \frac{1}{2}}
-2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-4±\sqrt{20}}{2\times \frac{1}{2}}
16 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-4±2\sqrt{5}}{2\times \frac{1}{2}}
20 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-4±2\sqrt{5}}{1}
2 ਨੂੰ \frac{1}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{5}-4}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-4±2\sqrt{5}}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 2\sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=2\sqrt{5}-4
-4+2\sqrt{5} ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{5}-4}{1}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-4±2\sqrt{5}}{1} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਵਿੱਚੋਂ 2\sqrt{5} ਨੂੰ ਘਟਾਓ।
x=-2\sqrt{5}-4
-4-2\sqrt{5} ਨੂੰ 1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=2\sqrt{5}-4 x=-2\sqrt{5}-4
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{1}{2}x^{2}+4x-2=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{1}{2}x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।
\frac{1}{2}x^{2}+4x=-\left(-2\right)
-2 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{1}{2}x^{2}+4x=2
0 ਵਿੱਚੋਂ -2 ਨੂੰ ਘਟਾਓ।
\frac{\frac{1}{2}x^{2}+4x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+\frac{4}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
\frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \frac{1}{2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+8x=\frac{2}{\frac{1}{2}}
4 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 4ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+8x=4
2 ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 2ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+8x+4^{2}=4+4^{2}
8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 4 ਨਿਕਲੇ। ਫੇਰ, 4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+8x+16=4+16
4 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+8x+16=20
4 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(x+4\right)^{2}=20
ਫੈਕਟਰ x^{2}+8x+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+4\right)^{2}}=\sqrt{20}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+4=2\sqrt{5} x+4=-2\sqrt{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=2\sqrt{5}-4 x=-2\sqrt{5}-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾਓ।